Publications by authors named "Saidani Wiem"

Environmental research plays a crucial role in formulating novel approaches to pollution management and preservation of biodiversity. This study aims to assess the potential harm of pharmaceutical triclosan (TCS) to non-target aquatic organism, the mussel Mytilus galloprovincialis. Furthermore, our study investigates the potential effectiveness of TiO and ZnO nanomaterials (TiO NPs and ZnO NPs) in degrading TCS.

View Article and Find Full Text PDF

This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect.

View Article and Find Full Text PDF

Organophosphorus derivatives are widely used in human health care and have been detected in aquatic ecosystems. These compounds may pose significant risks to non-target exposed organisms and only limited studies are available on bioconcentration and the effects of organophosphorus derivatives on marine organisms. The aim of this work was to evaluate the possible toxic effects of two concentrations (20 and 40 μg/L) of γ-oximo- and γ-amino-phosphonates and phosphine oxides in mediterranean clams Ruditapes decussatus exposed for 14 days using different biomarkers and the changes of filtration and respiration rate.

View Article and Find Full Text PDF

A new synthetisis method of Cu-doped ZnO nanoparticles is presented in this work, this novel approach allow one to produce Zinc oxide nanocristal owing to a modified Polyol process that makes use of triethyleneglycol (TREG) as a solvent. The structure and morphology of the nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N adsorption study, UV-Vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy and Raman spectroscopy. The lightly doped ZnCuO photocatalysts consisted in a novel nanorods structure of ZnCuO nanoparticles.

View Article and Find Full Text PDF

Nanoparticle decoration with noble metal represents a promising alternative to improve their photocatalytic and photovoltaic properties. However, toxicity can be influenced by such modification, as the bioavailability of these substances may be influenced. To understand how decoration influences the NP impacts in marine ecosystems, we exposed suspension-feeding clams, Ruditapes decussatus, to two photocatalyst nanocomposites, TiO NPs and AuTiO NPs, over 2 concentrations, 50 μg Land 100 μg L, in a laboratory experiment.

View Article and Find Full Text PDF

The increased use of gold nanoparticles (AuNPs) in several applications has led to a rise in concerns about their potential toxicity to aquatic organisms. In addition, toxicity of nanoparticles to aquatic organisms is related to their physical and chemical properties. In the present study, we synthesize two forms of gold octahedra nanoparticles (Au_ and Au_) in 1.

View Article and Find Full Text PDF

Context: Nanoparticles may cause adverse environmental effects but there is limited information on their interactions with marine organisms.

Objective: Our aim was to examine the effects of triangular gold nanoparticles (Tr-Au NPs) on the clam, Ruditapes decussatus.

Materials And Methods: Clams were exposed to Tr-Au1 = 5 µg/L and Tr-Au2 = 10 µg/L for 2 and 7 days.

View Article and Find Full Text PDF

The synthesis of hybrid nanomaterials has greatly increased in recent years due to their special physical and chemical properties. However, information regarding the environmental toxicity associated with these chemicals is limited, in particular in the aquatic environment. In the present study, an experiment was performed in which the marine bivalve (Ruditapes decussatus) was exposed for 14days to 2 concentrations of zinc oxide-decorated Au nanoparticles (Au-ZnONPs: Au-ZnONP50=50μg/L; Au-ZnONP100=100μg/L).

View Article and Find Full Text PDF