To review sustained-release intraocular platforms used to treat diseases of the retina and choroid. A literature review of the current applications of biomaterials for sustained-release therapy in retinal and choroidal diseases was performed. Retinal and choroidal diseases, such as neovascular age-related macular degeneration (nAMD), diabetic retinopathy (DR), diabetic macular edema (DME), and uveitis, are commonly treated using intravitreal (IVT) therapies that require frequent IVT injections.
View Article and Find Full Text PDFPurpose: Pathological angiogenesis and vascular instability are observed in diabetic retinopathy (DR), diabetic macular edema (DME), and wet age-related macular degeneration (wAMD). Many receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptors (VEGFRs) contribute to angiogenesis, whereas the RTK TIE2 is important for vascular stability. Pan-VEGFR tyrosine kinase inhibitors (TKIs) such as vorolanib, sunitinib, and axitinib are of therapeutic interest over current antibody treatments that target only one or two ligands.
View Article and Find Full Text PDFClin Drug Investig
December 2017
Background And Objective: Extended-release (ER) opioids are associated with high rates of abuse. Recreational opioid users often manipulate ER formulations to achieve a high plasma concentration in a short amount of time, resulting in a more rapid and intense high. Patients may also manipulate ER tablets to facilitate swallowing, without recognizing that manipulation could increase release rate.
View Article and Find Full Text PDFBackground: Patients who have chronic pain with dysphagia (difficulty swallowing) (CPD) often have difficulty taking oral medication and, as such, alter their medications by crushing or chewing in an attempt to make it easier to swallow. Such manipulation of currently marketed, extended-release (ER) opioid analgesics can significantly alter the pharmacokinetic (PK) properties of the formulations, resulting in poor treatment outcome or serious adverse events. There is an unmet medical need for oral ER opioid formulations suitable for patients with CPD.
View Article and Find Full Text PDFObjective: In vitro: To assess the effect of common crushing techniques on particle size reduction (PSR) and in vitro drug-release kinetics of oxycodone DETERx® (herein DETERx) and of a commercially available oxycodone extended-release (ER) tablet. In vivo: To evaluate the impact of the most effective manipulation method identified in the in vitro study and the effect of chewing on the pharmacokinetics (PK) of DETERx relative to oxycodone solution.
Design: In vitro: Mechanical manipulation of dosage forms using common household utensils.
Drug Dev Ind Pharm
July 2002
The quantity and consistency of drug delivery from dry powder inhalation devices that incorporate a pre-measured dose in a hard shell capsule of gelatin or other compatible material can be negatively affected by mold release lubricants used in capsule manufacturing. This paper describes a novel process employing supercritical CO2 for selective extraction of the fraction of lubricant responsible for the observed high and inconsistent drug retention in capsules and the ensuing lack of reproducibility of drug delivery. The process allows for lubricant removal from seemingly inaccessible interior surfaces of assembled capsule shells without altering the structural or chemical properties of the capsules.
View Article and Find Full Text PDF