The family of the β-integrin receptors is critically involved in host defense and homeostasis, by mediating immune cell adhesion, migration, and phagocytosis. Due to their key roles in immune surveillance and inflammation, their modulation has been recognized as an attractive drug target. However, the development of therapeutics has been limited, partly due to the high promiscuity of endogenous ligands, their functional responses, and gaps in our understanding of their disease-related molecular mechanisms.
View Article and Find Full Text PDFIn this research article, we report on the strengthening of a non-classical hydrogen bond (C-H⋅⋅⋅O) by introducing electron withdrawing groups at the carbon atom. The approach is demonstrated on the example of derivatives of the physiological E-selectin ligand sialyl Lewis (1, sLe). Its affinity is mainly due to a beneficial entropy term, which is predominantly caused by the pre-organization of sLe in its binding conformation.
View Article and Find Full Text PDFDue to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections.
View Article and Find Full Text PDFThe selectin family consisting of E-, P- and L-selectin plays dominant roles in atherosclerosis, ischemia-reperfusion injury, inflammatory diseases, and metastatic spreading of some cancers. An early goal in selectin-targeted drug discovery campaigns was to identify ligands binding to all three selectins, so-called pan-selectin antagonists. The physiological epitope, tetrasaccharide sialyl Lewis (sLe, 1) binds to all selectins, albeit with very different affinities.
View Article and Find Full Text PDFThe pharmacological modulation of disease-relevant carbohydrate-protein interactions represents an underexplored area of medicinal chemistry. One particular challenge in the design of glycomimetic compounds is the inherent instability of the glycosidic bond toward enzymatic cleavage. This problem has traditionally been approached by employing S-, N-, or C-glycosides with reduced susceptibility toward glycosidases.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2023
The d-GlcAc moiety in sialyl Lewis (sLe, ) acts predominantly as a linker to position the d-Gal and the l-Fuc moieties in the bioactive spatial orientation. The hypothesis has been made that the NHAc group of GlcAc pushes the fucose underneath the galactose and, thus, contributes to the stabilization of the bioactive conformation of the core of sLe (). To test this hypothesis, GlcAc mimetics consisting of (,)-1,2-cyclohexanediols substituted with alkyl and aryl substituents adjacent to the linking position of the fucose moiety were synthesized.
View Article and Find Full Text PDFBecause of their large polar surface area, carbohydrates often exhibit insufficient pharmacokinetic properties. Specifically, the carboxylic acid function of the tetrasaccharide sialyl Lewis , a pharmacophore crucial for the formation of a salt bridge with selectins, prevents oral availability. A common approach is the transfer of carboxylic acid into ester prodrugs.
View Article and Find Full Text PDFThe C-type lectin receptor DC-SIGN is a pattern recognition receptor expressed on macrophages and dendritic cells. It has been identified as a promiscuous entry receptor for many pathogens, including epidemic and pandemic viruses such as SARS-CoV-2, Ebola virus, and HIV-1. In the context of the recent SARS-CoV-2 pandemic, DC-SIGN-mediated virus dissemination and stimulation of innate immune responses has been implicated as a potential factor in the development of severe COVID-19.
View Article and Find Full Text PDFIn biological systems, polar interactions are heavily burdened by high desolvation penalties resulting from strong solute-solvent interactions. As a consequence thereof, enthalpic contributions of hydrogen bonds to the free energy of binding are severely diminished. However, this effect is strongly attenuated for interactions within solvent-shielded areas of proteins.
View Article and Find Full Text PDFThe C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents.
View Article and Find Full Text PDFBacterial resistance has become an important challenge in the treatment of urinary tract infections. The underlying resistance mechanisms can most likely be circumvented with an antiadhesive approach, antagonizing the lectin FimH located at the tip of fimbriae of uropathogenic E. coli.
View Article and Find Full Text PDFEthnopharmacological Relevance: Extracts from Cranberry fruits (Vaccinium macrocarpon) are traditionally used against urinary tract infections, mainly due to antiadhesive activity against uropathogenic E. coli (UPEC), but the exact mode of action and compounds, responsible for the activity, are unknown.
Aim Of The Study: i.
The normal aging of the extracellular matrix and collagen content of the human lumbar intervertebral disc (IVD) remains relatively unknown despite vast amounts of basic science research, partly because of the use of inadequate surrogates for a truly normal, human IVD. Our objective in this study was to describe and compare the morphology and ultrastructure of lumbar IVDs in 2 groups of young (G1-<35 years) and elderly (G2->65 years). Thirty L4-5 and L5-S1 discs per group were obtained during autopsies of presumably-asymptomatic individuals and analyzed with magnetic resonance imaging (MRI), a morphological grading scale, light microscopy, scanning electron microscopy (SEM) and immunohistochemistry (IHC) for collagen types I, II, III, IV, V, VI, IX and X.
View Article and Find Full Text PDFAntimicrobial resistance has become a serious concern for the treatment of urinary tract infections. In this context, an anti-adhesive approach targeting FimH, a bacterial lectin enabling the attachment of E. coli to host cells, has attracted considerable interest.
View Article and Find Full Text PDFAffinity data, such as dissociation constants (K ) or inhibitory concentrations (IC ), are widely used in drug discovery. However, these parameters describe an equilibrium state, which is often not established in vivo due to pharmacokinetic effects and they are therefore not necessarily sufficient for evaluating drug efficacy. More accurate indicators for pharmacological activity are the kinetics of binding processes, as they shed light on the rate of formation of protein-ligand complexes and their half-life.
View Article and Find Full Text PDFSeven-membered ring mimetics of mannose were studied as ligands for the mannose-specific bacterial lectin FimH, which plays an essential role in the first step of urinary tract infections (UTI). A competitive binding assay and isothermal titration calorimetry (ITC) experiments indicated an approximately ten-fold lower affinity for the seven-membered ring mannose mimetic 2--heptyl-1,6-anhydro-d--d-galactitol () compared to -heptyl α-d-mannopyranoside (), resulting exclusively from a loss of conformational entropy. Investigations by solution NMR, X-ray crystallography, and molecular modeling revealed that establishes a superimposable H-bond network compared to mannoside , but at the price of a high entropic penalty due to the loss of its pronounced conformational flexibility.
View Article and Find Full Text PDFFor many biological processes such as ligand binding, enzymatic catalysis, or protein folding, allosteric regulation of protein conformation and dynamics is fundamentally important. One example is the bacterial adhesin FimH, where the C-terminal pilin domain exerts negative allosteric control over binding of the N-terminal lectin domain to mannosylated ligands on host cells. When the lectin and pilin domains are separated under shear stress, the FimH-ligand interaction switches in a so-called catch-bond mechanism from the low- to high-affinity state.
View Article and Find Full Text PDFFrequent antibiotic treatment of urinary tract infections has resulted in the emergence of antimicrobial resistance, necessitating alternative treatment options. One such approach centers around FimH antagonists that block the bacterial adhesin FimH, which would otherwise mediate binding of uropathogenic Escherichia coli to the host urothelium to trigger the infection. Although the FimH lectin can adopt three distinct conformations, the evaluation of FimH antagonists has mainly been performed with a truncated construct of FimH locked in one particular conformation.
View Article and Find Full Text PDFThe most prevalent diseases manifested by are acute and recurrent bladder infections and chronic inflammatory bowel diseases such as Crohn's disease. clinical isolates express the FimH adhesin, which consists of a mannose-specific lectin domain connected a pilin domain to the tip of type 1 pili. Although the isolated FimH lectin domain has affinities in the nanomolar range for all high-mannosidic glycans, differentiation between these glycans is based on their capacity to form predominantly hydrophobic interactions within the tyrosine gate at the entrance to the binding pocket.
View Article and Find Full Text PDFUropathogenic E. coli exploit PapG-II adhesin for infecting host cells of the kidney; the expression of PapG-II at the tip of bacterial pili correlates with the onset of pyelonephritis in humans, a potentially life-threatening condition. It was envisaged that blocking PapG-II (and thus bacterial adhesion) would provide a viable therapeutic alternative to conventional antibiotic treatment.
View Article and Find Full Text PDFSiglec-8 is a human immune-inhibitory receptor that, when engaged by specific self-glycans, triggers eosinophil apoptosis and inhibits mast cell degranulation, providing an endogenous mechanism to down-regulate immune responses of these central inflammatory effector cells. Here we used solution NMR spectroscopy to dissect the fine specificity of Siglec-8 toward different sialylated and sulfated carbohydrate ligands and determined the structure of the Siglec-8 lectin domain in complex with its prime glycan target 6'-sulfo sialyl Lewis(x) A canonical motif for sialic acid recognition, extended by a secondary motif formed by unique loop regions, recognizing 6-O-sulfated galactose dictates tight specificity distinct from other Siglec family members and any other endogenous glycan recognition receptors. Structure-guided mutagenesis revealed key contacts of both interfaces to be equally essential for binding.
View Article and Find Full Text PDFSeveral studies describing the ultrastructure and extracellular matrix (ECM) of intervertebral discs (IVDs) involve animal models and specimens obtained from symptomatic individuals during surgery for degenerative disease or scoliosis, which may not necessarily correlate to changes secondary to normal aging in humans. These changes may also be segment-specific based on different load patterns throughout life. Our objective was to describe the ECM and collagen profile of cervical IVDs in young (G1 - <35 years) and elderly (G2 - >65 years) presumably-asymptomatic individuals.
View Article and Find Full Text PDF