Publications by authors named "Said El Fantroussi"

A functional ANOVA analysis of the thermal dissociation of RNA hybridized to DNA microarrays was used to improve discrimination between two soil microbial communities. Following hybridization of in vitro transcribed 16S rRNA derived from uncontaminated and 2,4,6-trinitrotoluene contaminated soils to an oligonucleotide microarray containing group- and species-specific perfect match (PM) probes and mismatch (MM) variants, thermal dissociation was used to analyze the nucleic acid bound to each PM-MM probe set. Functional ANOVA of the dissociation curves generally discriminated PM-MM probe sets when Td values (temperature at 50% probe-target dissociation) could not.

View Article and Find Full Text PDF

A small scale DNA microarray containing a set of oligonucleotide probes targeting the 16S rRNAs of several groups of nitrifying bacteria was developed for the monitoring of wastewater treatment plant samples. The microarray was tested using reference rRNAs from pure cultures of nitrifying bacteria. Characterization of samples collected from an industrial wastewater treatment facility demonstrated that nitrifying bacteria could be detected directly by microarray hybridization without the need for PCR amplification.

View Article and Find Full Text PDF

Microorganisms can degrade numerous organic pollutants owing to their metabolic machinery and to their capacity to adapt to inhospitable environments. Thus, microorganisms are major players in site remediation. However, their efficiency depends on many factors, including the chemical nature and the concentration of pollutants, their availability to microorganisms, and the physicochemical characteristics of the environment.

View Article and Find Full Text PDF

Increasing pollution of water and soils by xenobiotic compounds has led in the last few decades to an acute need for understanding the impact of toxic compounds on microbial populations, the catabolic degradation pathways of xenobiotics and the set-up and improvement of bioremediation processes. Recent advances in molecular techniques, including high-throughput approaches such as microarrays and metagenomics, have opened up new perspectives and pointed towards new opportunities in pollution abatement and environmental management. Compared with traditional molecular techniques dependent on the isolation of pure cultures in the laboratory, microarrays and metagenomics allow specific environmental questions to be answered by exploring and using the phenomenal resources of uncultivable and uncharacterized micro-organisms.

View Article and Find Full Text PDF

The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient.

View Article and Find Full Text PDF

Oligonucleotide microarrays were used to profile directly extracted rRNA from environmental microbial populations without PCR amplification. In our initial inspection of two distinct estuarine study sites, the hybridization patterns were reproducible and varied between estuarine sediments of differing salinities. The determination of a thermal dissociation curve (i.

View Article and Find Full Text PDF

A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae.

View Article and Find Full Text PDF

The effects of single-base-pair near-terminal and terminal mismatches on the dissociation temperature (T(d)) and signal intensity of short DNA duplexes were determined by using oligonucleotide microarrays and neural network (NN) analyses. Two perfect-match probes and 29 probes having a single-base-pair mismatch at positions 1 to 5 from the 5' terminus of the probe were designed to target one of two short sequences representing 16S rRNA. Nonequilibrium dissociation rates (i.

View Article and Find Full Text PDF