Publications by authors named "Said Agouram"

A significant part of the present and future of optoelectronic devices lies on thin multilayer heterostructures. Their optical properties depend strongly on strain, being essential to the knowledge of the stress level to optimize the growth process. Here the structural and microstructural characteristics of sub-micron a-ZnO epilayers (12 to 770 nm) grown on r-sapphire by metal-organic chemical vapour deposition are studied.

View Article and Find Full Text PDF

We have designed a synthesis procedure to obtain CsSnCl nanocrystals (NCs) doped with metal ion(s) to emit visible light. CsSnCl NCs doped with Bi, Te and Sb ions emitted blue, yellow and red light, respectively. In addition, NCs simultaneously doped with Bi and Te ions were synthesized in a single run.

View Article and Find Full Text PDF

A Nb-containing siliceous porous clay heterostructure (PCH) with Nb contents from 0 to 30 wt %) was prepared from a bentonite and used as support in the preparation of supported NiO catalysts with NiO loading from 15 to 80 wt %. Supports and NiO-containing catalysts were characterised by several physicochemical techniques and tested in the oxidative dehydrogenation (ODH) of ethane. The characterisation studies on Nb-containing supports showed the presence of well-anchored Nb species without the formation of Nb O crystals.

View Article and Find Full Text PDF

Within the most mesmerizing materials in the world of optoelectronics, mixed halide perovskites (MHPs) have been distinguished because of the tunability of their optoelectronic properties, balancing both the light-harvesting efficiency and the charge extraction into highly efficient solar devices. This feature has drawn the attention of analogous hot topics as photocatalysis for carrying out more efficiently the degradation of organic compounds. However, the photo-oxidation ability of perovskite depends not only on its excellent light-harvesting properties but also on the surface chemical environment provided during its synthesis.

View Article and Find Full Text PDF

Mixed halide perovskites are one of the promising candidates in developing solar cells and light-emitting diodes (LEDs), among other applications, because of their tunable optical properties. Nonetheless, photoinduced phase segregation, by formation of segregated Br-rich and I-rich domains, limits the overall applicability. We tracked the phase segregation with increasing crystalline size of CsPbBr I and their photoluminescence under continuous-wave laser irradiation (405 nm, 10 mW cm) and observed the occurrence of the phase segregation from the threshold size of 46 ± 7 nm.

View Article and Find Full Text PDF

Halide perovskites are revolutionizing the photovoltaic and optoelectronic fields with outstanding performances obtained in a remarkably short time. However, two major challenges remain: the long-term stability and the Pb content, due to its toxicity. Despite the great effort carried out to substitute the Pb by a less hazardous element, lead-free perovskite still remains more unstable than lead-containing perovskites and presents lower performance as well.

View Article and Find Full Text PDF

CH NH PbBr perovskite nanoparticles (P ) are prepared with a photoluminescence quantum yield of ≈100% in air atmosphere by using the quasi-spherical shaped 2-adamantylammonium bromide (ADBr) as the only capping ligand. The photostability under wet conditions of this kind of nanoparticles is enhanced by using cucurbit[7]uril-adamantylammonium (AD@CB) host-guest complexes as the capping ligand.

View Article and Find Full Text PDF

To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material.

View Article and Find Full Text PDF

AuPd nanoparticles (<3 nm) have been encapsulated on the pores of a nanostructured CMK-3 carbon prepared by a nanocasting procedure. This material has been shown to be an excellent catalyst for the direct synthesis of hydrogen peroxide from molecular hydrogen and oxygen.

View Article and Find Full Text PDF

The doping of mesoporous ceria with copper significantly enhances activity for naphthalene total oxidation, the enhanced performance is controlled by the increased concentration of surface oxygen defects.

View Article and Find Full Text PDF

Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca.

View Article and Find Full Text PDF

Gold deposited on a cobalt oxide with high surface area (138 m(2)g(-1)), obtained through a nanocasting route using a siliceous KIT-6 mesoporous material as a hard template, has demonstrated high activity for the total oxidation of propane and toluene, and ambient temperature CO oxidation. The addition of gold promotes the activity when compared to a gold-free Co(3)O(4) catalyst prepared using the same nanocasting technique. The enhanced catalytic activity when gold is present has been explained for the deep oxidation of propane and toluene in terms of the improved reducibility of cobalt oxide when gold is added, rather than to the intrinsic activity of metallic gold particles.

View Article and Find Full Text PDF

Au nanoparticles are synthesized in situ upon the electron beam exposure of a poly(vinyl alcohol) (PVA) thin film containing Au(III). The e-beam-irradiated areas are insoluble in water (negative-tone resist), and Au-PVA nanocomposite patterns with a variable profile along the structure can be thus generated (3D lithography) in a single step. A local characterization of the generated patterns is performed by high-resolution transmission electron microscopy and UV-vis localized surface plasmon resonance microspectroscopy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuf5pqtno51j1ppoact6gln26tvnki16m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once