Publications by authors named "Said Abdel Aziz"

GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GABAB receptors are abundant on dendritic spines, where they dampen postsynaptic excitability and inhibit Ca2+ influx through NMDA receptors when activated by spillover of GABA from neighboring GABAergic terminals. Here, we show that an excitatory signaling cascade enables spines to counteract this GABAB-mediated inhibition.

View Article and Find Full Text PDF

GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. Two receptor subtypes, GABA(B(1a,2)) and GABA(B(1b,2)), are formed by the assembly of GABA(B1a) and GABA(B1b) subunits with GABA(B2) subunits. The GABA(B1b) subunit is a shorter isoform of the GABA(B1a) subunit lacking two N-terminal protein interaction motifs, the sushi domains.

View Article and Find Full Text PDF

Functional gamma-aminobutyric acid type B (GABA(B)) receptors are normally only observed upon coexpression of GABA(B1) with GABA(B2) subunits. A C-terminal arginine-based endoplasmic reticulum (ER) retention/retrieval signal, RSRR, prevents escape of unassembled GABA(B1) subunits from the ER and restricts surface expression to correctly assembled heteromeric receptors. The RSRR signal in GABA(B1) is proposed to be shielded by C-terminal coiled-coil interaction of the GABA(B1) with the GABA(B2) subunit.

View Article and Find Full Text PDF