Publications by authors named "SaiShyam Ramesh"

Article Synopsis
  • Drug resistance is making existing antimalarials ineffective, highlighting the urgent need for new treatments.
  • Researchers identified a promising new chemotype, cyclopropyl carboxamide, through screening a library of compounds, leading to the development of a strong candidate, WJM280, which is effective against malaria without harming human cells.
  • Further studies revealed that resistant parasites have mutations in the cytochrome b gene, confirming it as the drug target, but improving the compound's stability and effectiveness in mouse models still needs to be addressed.
View Article and Find Full Text PDF

The mitochondrial electron transport chain (ETC) is a multi-component pathway that mediates the transfer of electrons from metabolic reactions that occur in the mitochondrion to molecular oxygen (O). The ETC contributes to numerous cellular processes, including the generation of cellular ATP through oxidative phosphorylation, serving as an electron sink for metabolic pathways such as de novo pyrimidine biosynthesis and for maintaining mitochondrial membrane potential. Proper functioning of the mitochondrial ETC is necessary for the growth and survival of apicomplexan parasites including , a causative agent of malaria.

View Article and Find Full Text PDF

The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the asexual parasite and identified the 7--substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency.

View Article and Find Full Text PDF