Publications by authors named "Sai-Jin Xiao"

Background: The increasing uranium containing wastes generated during uranium mining and finishing pose a huge threat to the environment and human health, and thus robust strategies for on-site monitoring of uranium pollutant are of great significance for environmental protection around uranium tailings.

Results: Herein, a facile "turn-on" colorimetric platform that can achieve uranium detection by spectrometry and naked eyes was developed based on the uranium-enhanced nanozyme activity of covalent organic framework (JUC-505). Thanks to the extended π-conjugated skeleton and donor-acceptor (D-A) structure, JUC-505 exhibited superior photo-activated nanozyme activity, which would be prohibited when the cyano group in JUC-505 skeleton was transformed to the amidoxime group.

View Article and Find Full Text PDF

As large numbers of people are suffering from gout, an accurate, rapid, and sensitive method for the detection of gout biomarker, uric acid, is important for its effective control, diagnosis, and therapy. Although colorimetric detection methods based on uricase have been considered, they still have limitations as they produce toxic HO and are expensive and not stable. Here, a novel uricase-free colorimetric method was developed for the sensitive and selective detection of uric acid based on the light-induced oxidase-mimicking activity of a new photosensitized covalent organic framework (COF) (2,4,6-trimethylpyridine-3,5-dicarbonitrile-4-[2-(4-formylphenyl)ethynyl]benzaldehyde COF [DCTP-EDA COF]).

View Article and Find Full Text PDF

An imidazolyl hydrogen-bonded organic framework (HOF-T) with outstanding thermal and water stability was constructed by C-H⋯N hydrogen bonding and C-H⋯π interactions. UO can be selectively captured by the imidazole group of HOF-T and rapidly reduced to UO under visible light irradiation, realizing exceptional uranium removal with high capacity and fast kinetics.

View Article and Find Full Text PDF

Untreated radioactive iodine (I and I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I vapor and I from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I and I can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing covalent organic frameworks (COFs) to create nanozymes for use in catalysis and sensing applications.
  • Through a chemical reaction, a new two-dimensional COF called DAFB-DCTP was created, which possesses both hydrolytic and photosensitive properties due to the inclusion of pyridine groups.
  • This COF acts as an artificial enzyme capable of catalyzing specific reactions, enabling the detection of harmful compounds and offering a user-friendly, smartphone-compatible method for colorimetric analysis, demonstrating promising applications in environmental monitoring and safety.
View Article and Find Full Text PDF

Nanomaterials with enzyme mimetic activity have attracted extensive attention, especially in the regulation of their catalytic activities by biomolecules or other polymers. Here, a covalent organic framework (Tph-BT COF) with excellent photocatalytic activity is constructed by Schiff base reaction, and its mimetic oxidase activity and peroxidase activity is inversely regulated via single-stranded DNA (ssDNA). Under light-emitting diode (LED) light irradiation, Tph-BT exhibited outstanding oxidase activity, which efficiently catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB, and ssDNA, especially those with poly-thymidine (T) sequences, can significantly inhibit its oxidase activity.

View Article and Find Full Text PDF

Previous researches of covalent organic frameworks (COFs) have shown their potential as fluorescent probes, but the regulation of their optical properties and recognition characteristics still remains a challenge, and most of reports required complicated post-decoration to improve the sensing performance. In this context, we propose a novel in-situ strategy to construct uracil-conjugated COFs and modulate their fluorescence properties for sensitive and selective mercury(II) detection. By using 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPPy) as fundamental blocks and 5-aminouraci (5-AU) as the functional monomer, a series of COFs (Py-COFs and Py-U-COFs-1 to Py-U-COFs-5) with tunable fluorescence were solvothermally synthesized through an in-situ Schiff base reaction.

View Article and Find Full Text PDF

Nanozymes are nanomaterials with enzyme-mimetic activity. It is known that DNA can interact with various nanozymes in different ways, enhancing or inhibiting the activity of nanozymes, which can be used to develop various biosensors. In this work, we synthesized a photosensitive covalent-organic framework (Tph-BT) as a nanozyme, and its oxidase and peroxidase activities could be reversely regulated by surface modification of single-stranded DNA (ssDNA) for the colorimetric detection of UO.

View Article and Find Full Text PDF

To ensure the long-term sustainable development of nuclear energy as well as the prevention and control of uranium pollution, new materials that can simultaneously detect and separate uranium are still urgently needed. Herein, a new fluorescent covalent organic polymer (COP), namely HT-COP-AO, was synthesized andemployed as both the fluorescent probe and absorbent for simultaneous uranium detection and separationconsidering its excellent fluorescence property and strong uranium coordination ability. The results showed that the fluorescence of HT-COP-AO was quickly quenched by uranium within 2 min, and the limit of detection was 0.

View Article and Find Full Text PDF

Bacterial infection causes serious threats to human life, especially with the appearance of antibiotic-resistant bacteria. Phototherapeutic approaches have become promising due to their noninvasiveness, few adverse effects, and high efficiency. Herein, a covalent organic framework (TAPP-BDP) with a conjugated donor-acceptor (D-A) structure has been constructed for efficient photoinduced bacteriostasis.

View Article and Find Full Text PDF

In this work, we synthesized a two-dimensional fluorescent covalent-organic framework (TFPB-TTA COF) nanosheet by selecting and designing reactive monomers to realize the dual-functional processing of nitrophenols. The staggered benzene ring, triazine structure, and imine bond (C═N) of the TFPB-TTA COF can capture free nitrophenols through hydrogen bonding and conjugation interaction, and then, the photoinduced electron transfer and fluorescence resonance energy transfer (FRET) between the TFPB-TTA COF and nitrophenols affects the fluorescence emission of the TFPB-TTA COF, realizing the fluorescence sensing of nitrophenols. The large values and the low detection limit suggest that the TFPB-TTA COF can serve as sensitive and selective fluorescence sensors for nitrophenol detection in an aqueous system.

View Article and Find Full Text PDF

Uranium is an important nuclear fuel and the risk of human exposure to uranium increases as increasing amounts of uranium-containing waste enter the environment due to the rapid growth of nuclear power. Therefore, rapid, sensitive, and portable uranium detection is a promising approach to effectively control and monitor uranium contamination. To achieve this goal, abundant oxygen- and nitrogen-containing groups were introduced to molybdenum oxide quantum dot (MoO QDs) surfaces with dopamine (DA) modification.

View Article and Find Full Text PDF

2D covalent organic frameworks (2D COFs) have been recognized as a novel class of photoactive materials owing to their extended π-electron conjugation and high chemical stabilities. Herein, a new covalent organic framework (Tph-BDP) is facilely synthesized by using a porphyrin derivative and an organic dye BODIPY derivative (5,5-difluoro-2,8-diformyl-1,3,7,9-tetramethyl-10-phenyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazabori-nin-4-ium-5-uide) as monomers for the first time, and their unique photosensitive properties endow them excellent simulated oxidase activity under 635 nm laser irradiation that can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Further findings demonstrate that the presence of uranium (UO ) can coordinate with imines of the oxidation products of TMB, thus modulating the charge transfer process of the colored products accompanied with intensive aggregation and remarkable color fading.

View Article and Find Full Text PDF

Tuberculosis is one of the main infectious diseases threatening public health, and the development of simple, rapid, and cost-saving methods for tuberculosis diagnosis is of profound importance for tuberculosis prevention and treatment. The bacterium Mycobacterium tuberculosis (MTB) is the pathogen that causes tuberculosis, and assaying for MTB is the only criterion for tuberculosis diagnosis. A new enzyme-free method based on strand displacement amplification and magnetic beads was developed for simple, rapid, and cost-saving MTB detection.

View Article and Find Full Text PDF

Molybdenum oxide nanomaterials have recently attracted widespread attention for their unique optical properties and catalytic performance. However, until now, there is little literature on the application of photoluminescent molybdenum oxide nanomaterials in biological and pharmaceutical sensing. Herein, photoluminescent molybdenum oxide quantum dots (MoO QDs) were synthesized via a facile method, and then, the synthesized MoO QDs were further applied as a new type of photoluminescent probe to design a new off-on sensor for captopril (Cap) determination on the basis of the fact that the quenched photoluminescence of MoO QDs by Cu was restored with Cap through specific interaction between the thiol group of Cap and Cu.

View Article and Find Full Text PDF

Siliva as a kind of biomarker containing a variety of bioactive components can be used to help disease diagnosis. Compared with the urine and blood, the collection of saliva is more simple and convenient while the collection process is completely non-invasive. Therefore, saliva detection attracts more and more attention in non-invasive disease diagnosis.

View Article and Find Full Text PDF

As a well-studied transition-metal semiconductor material, MoOx has a wider band gap than molybdenum disulfide (MoS2), and its property varies dramatically for the existence of several different allotropes and suboxide phases of molybdenum oxides (MoOx, x < 3). In this manuscript, a one-pot method possessing the advantages of one pot, easily prepared, rapid, and environmentally friendly, has been developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs), in which commercial molybdenum disulfide (MoS2) powder and hydrogen peroxide (H2O2) are employed as the precursor and oxidant, respectively. The obtained MoOx QDs can be further utilized as an efficient photoluminescent probe, and a new turn-off sensor is developed for 2,4,6-trinitrotoluene (TNT) determination based on the fact that the photoluminescence of MoOx QDs can be quenched by the Meisenheimer complexes formed in the strong alkali solution through the inner filter effect (IFE).

View Article and Find Full Text PDF

Molybdenum oxide (MoOx) is a well-studied transition-metal semiconductor material, and has a wider band gap than MoS2 which makes it become a promising versatile probe in a variety of fields, such as gas sensor, catalysis, energy storage ect. However, few MoOx nanomaterials possessing photoluminescence have been reported until now, not to mention the application as photoluminescent probes. Herein, a one-pot method is developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs) in which commercial molybdenum disulfide powder and hydrogen peroxide (H2O2) are involved as the precursor and oxidant, respectively.

View Article and Find Full Text PDF

Fluorescent semiconductor quantum dot-graphene oxide (QD-GO) nanocomposites with unique optical properties can be prepared by a facile decoration of aptamer-labelled CdSe@ZnS QDs on GO nanosheets. The formation of such nanocomposites is based on the π-π stacking between the DNA bases on the QD surfaces and the GO. TEM and AFM were used to study the morphologies and distribution of the QDs on the GO surfaces.

View Article and Find Full Text PDF

We have developed a simple, rapid and label-free sensor for the essential biological OH radicals based on the fluorescence quenching of DNA-templated Ag nanoclusters (DNA-Ag NCs). The OH radicals generated from the Fenton reagent attack and cleave the DNA template, which disturbs the microenvironments around Ag NCs, resulting in spontaneous aggregation due to the lack of stabilization and further the quenching of the Ag NCs fluorescence. These changes in fluorescence intensity allow sensing of OH radicals with good sensitivity and selectivity under optimal conditions.

View Article and Find Full Text PDF

Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples.

View Article and Find Full Text PDF
Article Synopsis
  • Uranium, a natural radioactive element, can exist in the air as aerosol and poses health risks due to its radioactive properties, especially related to nuclear energy activities.
  • A new field method was developed for rapid detection of uranium in air samples, involving absorption with a nitrate solution and reaction with a solid reagent kit, followed by measurement with a portable photometer.
  • The method successfully identified uranium concentrations in air samples over low-grade ore, yielding accurate results with a 1.72% relative standard deviation (RSD), offering benefits of simplicity, cost-effectiveness, and high accuracy compared to traditional methods like ICP-MS.
View Article and Find Full Text PDF

Though rapid tests were developed for mass screening of prion diseases in the last century, bovine spongiform encephalopathy (BSE) was still epidemic in some European countries. The main reason is that the sensitivity of such tests is insufficient for detecting animals that are incubating with prion diseases at the presymptomatic stage. Driven by this, in this contribution, we developed a novel sensitive label-free method taking advantage of DNA aptamer for prion proteins (PrP) detection through the formation of T-Hg(2+)-T configuration.

View Article and Find Full Text PDF

Although nanoparticles have been widely used as optical contrasts for cell imaging, the complicated prefunctionalized steps and low labeling efficiency of nanoprobes greatly inhibit their applications in cellular protein imaging. In this study, we developed a novel and general strategy that employs an aptamer not only as a recognizer for protein recognition but also as a linker for nanoreporter targeting to specifically label membrane proteins of interest and track their endocytic pathway. With this strategy, three kinds of nanoparticles, including gold nanoparticles, silver nanoparticles, and quantum dots (QDs), have been successfully targeted to the membrane proteins of interest, such as nucleolin or prion protein (PrP(C)).

View Article and Find Full Text PDF

The major challenge of prion disease diagnosis at the presymptomatic stage is how to sensitively or selectively discriminate and detect the minute quantity of disease-associated prion protein isoform (PrP(Res)) in complex biological systems such as serum and brain homogenate. In this contribution, we developed a dual-aptamer strategy by taking the advantages of aptamers, the excellent separation ability of magnetic microparticles (MMPs), and the high fluorescence emission features of quantum dots (QDs). Two aptamers (Apt1 and Apt2), which can recognize their two corresponding distinct epitopes of prion proteins (PrP), were coupled to the surfaces of MMPs and QDs, respectively, to make MMPs-Apt1 and QDs-Apt2 ready at first, which then could be coassociated together through the specific recognitions of the two aptamers with their two corresponding distinct epitopes of PrP, forming a sandwich structure of MMPs-Apt1-PrP-Apt2-QDs and displaying the strong fluorescence of QDs.

View Article and Find Full Text PDF