Exploring continuous time crystals (CTCs) within the symmetric subspace of spin systems has been a subject of intensive research in recent times. Thus far, the stability of the time-crystal phase outside the symmetric subspace in such spin systems has gone largely unexplored. Here, we investigate the effect of including the asymmetric subspaces on the dynamics of CTCs in a driven dissipative spin model.
View Article and Find Full Text PDFSynchronization between limit cycle oscillators can arise through entrainment to an external drive or through mutual coupling. The interplay between the two mechanisms has been studied in classical synchronizing systems, but not in quantum systems. Here, we point out that competition and cooperation between the two mechanisms can occur due to phase pulling and phase repulsion in quantum systems.
View Article and Find Full Text PDFFinding the transient and steady state properties of open quantum systems is a central problem in various fields of quantum technologies. Here, we present a quantum-assisted algorithm to determine the steady states of open system dynamics. By reformulating the problem of finding the fixed point of Lindblad dynamics as a feasibility semidefinite program, we bypass several well-known issues with variational quantum approaches to solving for steady states.
View Article and Find Full Text PDFStrong measurements usually restrict the dynamics of measured finite dimensional systems to the Zeno subspace, where subsequent evolution is unitary due to the suppression of dissipative terms. Here, we show qualitatively different behavior induced by the competition between strong measurements and the thermodynamic limit, inducing a time-translation symmetry breaking phase transition resulting in a continuous time crystal. We consider an undriven spin star model, where the central spin is subject to a strong continuous measurement, and qualify the dynamic behavior of the system in various parameter regimes.
View Article and Find Full Text PDFWe introduce the concept of seeding of crystallization in time by studying the dynamics of an ensemble of coupled continuous time crystals. We demonstrate that a single subsystem in a broken-symmetry phase acting as a nucleation center may induce time-translation symmetry breaking across the entire ensemble. Seeding is observed for both coherent and dissipative coupling, as well as for a broad range of parameter regimes.
View Article and Find Full Text PDFWe present two primitive algorithms to evaluate overlaps and transition matrix time series, which are then used to construct several quantum-assisted quantum control algorithms. Unlike previous approaches, our method bypasses tomographically complete measurements and instead relies solely on single qubit measurements. We analyze circuit complexity of composed algorithms and sources of noise arising from Trotterization and measurement errors.
View Article and Find Full Text PDFGeneric mesoscopic quantum systems that interact with their environment tend to display appreciable correlations with environment that often play an important role in the physical properties of the system. However, the experimental methods needed to characterize such systems either ignore the role of initial correlations or scale unfavourably with system dimensions. Here, we present a technique that is agnostic to system-environment correlations and can be potentially implemented experimentally.
View Article and Find Full Text PDFWith growing interest in quantum technologies, possibilities of synchronizing quantum systems have garnered significant recent attention. In experiments with dilute ensemble of laser cooled spin-1 ^{87}Rb atoms, we observe phase difference of spin coherences to synchronize with phases of external classical fields. An initial limit-cycle state of a spin-1 atom localizes in phase space due to dark-state polaritons generated by classical two-photon tone fields.
View Article and Find Full Text PDFOwing to the ubiquity of synchronization in the classical world, it is interesting to study its behavior in quantum systems. Though quantum synchronization has been investigated in many systems, a clear connection to quantum technology applications is lacking. We bridge this gap and show that nanoscale heat engines are a natural platform to study quantum synchronization and always possess a stable limit cycle.
View Article and Find Full Text PDFIt is desirable to observe synchronization of quantum systems in the quantum regime, defined by the low number of excitations and a highly nonclassical steady state of the self-sustained oscillator. Several existing proposals of observing synchronization in the quantum regime suffer from the fact that the noise statistics overwhelm synchronization in this regime. Here, we resolve this issue by driving a self-sustained oscillator with a squeezing Hamiltonian instead of a harmonic drive and analyze this system in the classical and quantum regime.
View Article and Find Full Text PDFCan collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when N batteries are charged collectively.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2015
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map.
View Article and Find Full Text PDFHere we address the question of just how cold one can cool a quantum system, given that the size of the control forces is limited. We solve this problem fully, within the dual regimes of (i) weak coupling, defined as that in which the thermalization dynamics of the system is preserved, and (ii) relatively strong control, being that in which appreciable cooling can be achieved. State-of-the art cooling schemes are presently implemented in this regime.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2012
The recent discovery that for large Hilbert spaces, almost all (that is, typical) Hamiltonians have eigenstates that place small subsystems in thermal equilibrium, has shed much light on the origins of irreversibility and thermalization. Here we give numerical evidence that many-body lattice systems generically approach typicality as the number of subsystems is increased, and thus provide further support for the eigenstate thermalization hypothesis. Our results indicate that the deviation of many-body systems from typicality decreases exponentially with the number of systems.
View Article and Find Full Text PDFThe present state of the art in cooling mechanical resonators is a version of sideband cooling. Here we present a method that uses the same configuration as sideband cooling-coupling the resonator to be cooled to a second microwave (or optical) auxiliary resonator-but will cool significantly colder. This is achieved by varying the strength of the coupling between the two resonators over a time on the order of the period of the mechanical resonator.
View Article and Find Full Text PDF