Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated.
View Article and Find Full Text PDFDensity functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A.
View Article and Find Full Text PDFThe initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).
View Article and Find Full Text PDFDensity functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts.
View Article and Find Full Text PDFDensity functional theory calculations have been used to investigate the reaction mechanism proposed for the formation of an oxoiron(iv) complex [Fe(IV)(TMC)O](2+) (P) (TMC = 1,4,8,11-tetramethylcyclam) starting from a non-heme reactant complex [Fe(II)(TMC)](2+) (R) and O2 in the presence of acid H(+) and reductant BPh4(-). We also addressed the possible role of redox-inactive Sc(3+) as a replacement for H(+) acid in this reaction to trigger the formation of P. Our computational results substantially confirm the proposed mechanism and, more importantly, support that Sc(3+) could trigger the O2 activation, mainly dictated by the availability of two electrons from BPh4(-), by forming a thermodynamically stable Sc(3+)-peroxo-Fe(3+) core that facilitates O-O bond cleavage to generate P by reducing the energy barrier.
View Article and Find Full Text PDFWe used density functional theory to investigate the capacity for carbon monoxide (CO) release of five newly synthesized manganese-containing CO-releasing molecules (CO-RMs), namely CORM-368 (1), CORM-401 (2), CORM-371 (3), CORM-409 (4), and CORM-313 (5). The results correctly discriminated good CO releasers (1 and 2) from a compound unable to release CO (5). The predicted Mn-CO bond dissociation energies were well correlated (R(2) ≈0.
View Article and Find Full Text PDF