Micromolded carbon paste electrodes are easily fabricated, disposable, and can be integrated into microfluidic devices to fabricate inexpensive sensors and biosensors. In this work, carbon paste microelectrodes were fabricated in poly(dimethylsiloxane) using micromolding techniques and were coupled to a microfluidic channel to fabricate electrogenerated chemiluminescent (ECL) sensors. ECL was generated using both the tris(2,2'-bipyridyl)ruthenium(II)-tripropylamine system and the hydrogen peroxide and luminol system.
View Article and Find Full Text PDFOmega (n)-3 fatty acids are vital to neonatal maturation, and recent investigations reveal n-3 fatty acids serve as substrates for the biosynthesis of specialized pro-resolving lipid mediators (SPM) that have anti-inflammatory and immune-stimulating effects. The role SPM play in the protection against negative maternal-fetal health outcomes is unclear, and there are no current biomarkers of n-3 fatty acid sufficiency. We sought to ascertain the relationships between n-3 fatty acid intake, SPM levels, and maternal-fetal health outcomes.
View Article and Find Full Text PDFElectrogenerated chemiluminescence (ECL) is the production of light via electron transfer reactions between electrochemically produced reagents. ECL-based biosensors use specific biological interactions to recognize an analyte and produce a luminescent signal. Biosensors fabricated with novel biorecognition species have increased the number of analytes detected.
View Article and Find Full Text PDF