Publications by authors named "Sai Siva Gorthi"

LAMP diagnosis of malaria is simple and cost-effective with acceptable sensitivity and specificity as compared to standard diagnostic modules such as microscopy, RDTs and nested PCR, and thus its deployment for onsite screening of malaria in resource-limited regions is under consideration. However, the requirement of an electricity-operated dry bath and bulky read-out unit is still a major concern. In an effort to simplify this limitation, we have developed a portable LAMP device and fluorescence readout unit which can be used in the rapid point-of-care diagnosis of malaria.

View Article and Find Full Text PDF

People afflicted with sickle cell disease (SCD) experience severe deterioration in quality of life. The disease is characterized by debilitating pain, anemia, and increased susceptibility to life threatening infections. This genetic disorder is endemic to many parts of the world.

View Article and Find Full Text PDF

Opportunistic skin pathogens and their resistance to pre-existing therapeutics are a challenge to normal physiological wound healing processes. Consistent development of antimicrobial agents is required to overcome the complications raised by antimicrobial resistance. An effective alternative proposed in recent research includes the use of antimicrobial nanoparticles or nanobiopolymers.

View Article and Find Full Text PDF

is an intracellular protozoan parasite, that causes visceral leishmaniasis (VL), and consequently, post-kala azar dermal leishmaniasis (PKDL). Diagnosis and treatment of leishmaniasis is crucial for decreasing its transmission. Various diagnostic techniques like microscopy, enzyme-linked immunosorbent assays (ELISA) and PCR-based methods are used to detect leishmaniasis infection.

View Article and Find Full Text PDF

Fringe projection profilometry (FPP) is a widely used non-contact optical method for 3D profiling of objects. The commonly used linear fringe pattern in FPP has periodic intensity variations along the lateral direction. As a result, the linear fringe pattern used in FPP cannot uniquely represent the lateral shift induced by the objects having surface discontinuities.

View Article and Find Full Text PDF

Microscopic observation of biological specimen smears is the mainstay of diagnostic pathology, as defined by the Digital Pathology Association. Though automated systems for this are commercially available, their bulky size and high cost renders them unusable for remote areas. The research community is investing much effort towards building equivalent but portable, low-cost systems.

View Article and Find Full Text PDF

Lipopolysaccharides (endotoxins), found on Gram-negative bacteria, can trigger a severe immune response in humans leading to septic shock and in extreme cases, even death. Therefore, the detection and neutralization of lipopolysaccharides (LPS) is of utmost importance in the pharmaceutical and medical industries. The United States Food and Drug Administration (US FDA) recommended detection method for LPS, the Limulus amebocyte lysate (LAL) assay, is expensive, time consuming, complex, and is prone to interference from proteases.

View Article and Find Full Text PDF

Pebrine is the most dreaded infectious disease of the silkworm and has devastated sericulture in Europe during the 18th century. Thereafter, if it is detected, the crop is burned to prevent further dissemination. The conventional microscopic examination of moth's body fluid is erroneous and it exacerbates on Metarhizium anisopliae (MA) contaminated test samples.

View Article and Find Full Text PDF

Photocatalysis is an effective way for treatment of wastewater and degradation of dyes. It is important to assess the reusability of photocatalyst and treated water after the treatment process. In this study, the photocatalytic activity of TiO (titanium dioxide) and TiO-TMAOH (titanium dioxide-tetramethylammonium hydroxide) was analyzed for degradation of methylene blue dye.

View Article and Find Full Text PDF

The detection of food adulterants and toxicants can prevent a large variety of adverse health conditions for the global population. Through the process of rapid sensing enabled by deploying novel and robust sensors, the food industry can assist in the detection of adulterants and toxicants at trace levels. Sensor platforms which exploit graphene-based nanomaterials satisfy this requirement due to outstanding electrical, optical and thermal properties.

View Article and Find Full Text PDF

The introduction of lipopolysaccharides (LPS) or endotoxins that originate from Gram-negative bacteria into the human blood stream induces a severe immune response that can lead to septic shock, and even death. Hence, the accurate detection of LPS is of great importance in the medical and pharmaceutical sectors. This paper proposes a novel label-free fluorescence assay for the detection of LPS utilizing aptamers and the interference synthesis of dsDNA-templated copper nanoparticles.

View Article and Find Full Text PDF

Low-cost automated histopathology microscopy systems usually suffer from optical imperfections, producing images that are slightly Out of Focus (OoF). In this work, a guided filter (GF) based image preprocessing is proposed for compensating focal errors and its efficacy is demonstrated on images of healthy and malaria infected red blood cells (h-RBCs and i-RBCs), and PAP smears. Since contrast enhancement has been widely used as an image preprocessing step for the analysis of histopathology images, a systematic comparison is made with six such prominently used methods, namely Contrast Limited Adaptive Histogram Equalization (CLAHE), RIQMC-based optimal histogram matching (ROHIM), modified L, Morphological Varying(MV)-Bitonic filter, unsharp mask filter and joint bilateral filter.

View Article and Find Full Text PDF

Fluorescent copper nanoparticles templated by dsDNA have gained significant research interest as they are inexpensive and easy to synthesize, and have found applications in the detection of a wide range of analytes. The presence of the analyte in the reaction mixture interferes with the synthesis of the copper nanoparticles and the subsequent drop in fluorescence can be correlated to the concentration of the analyte present in the solution. Analyte detection using copper nanoparticle-based assays is amenable for in-situ applications as the test does not require expensive reagents and can be performed at room temperature.

View Article and Find Full Text PDF

The pumping of fluids into microfluidic channels has become almost an unavoidable operation in all microfluidic applications. Such a need has seen an outburst of several techniques for pumping, out of which the majority of techniques involve complicated fabrication, as they require the introduction of electrodes, valves, piezoelectric materials, acoustic transducers, etc., into the microfluidic device.

View Article and Find Full Text PDF

Separating the particles from the liquid component of sample solutions is important for several microfluidic-based sample preparations and/or sample handling techniques, such as plasma separation from whole blood, sheath-free flow focusing, particle enrichment etc. This paper presents a microfluidic in-flow decantation technique that provides the separation of particles from particle-free fluid while in-flow. The design involves the expansion of sample fluid channel in lateral and depth directions, thereby producing a particle-free layer towards the walls of the channel, followed by gradual extraction of this particle-free fluid through a series of tiny openings located towards one-end of the depth-direction.

View Article and Find Full Text PDF

The weak fluorescence emission from dsDNA templated copper nanoparticles necessitates the use of high-end detectors like photomultiplier tubes for their detection. This sets limitations on their applicability to in-situ analyte detection and point-of-care applications which utilize comparatively low cost and less sensitive detectors. In this article, a technique to improve the fluorescence properties of copper nanoparticles templated on dsDNA is reported.

View Article and Find Full Text PDF

Cost-effective and automated acquisition of whole slide images is a bottleneck for wide-scale deployment of digital pathology. In this article, a computation augmented approach for the development of an automated microscope slide scanner is presented. The realization of a prototype device built using inexpensive off-the-shelf optical components and motors is detailed.

View Article and Find Full Text PDF

The present paper introduces a focus stacking-based approach for automated quantitative detection of Plasmodium falciparum malaria from blood smear. For the detection, a custom designed convolutional neural network (CNN) operating on focus stack of images is used. The cell counting problem is addressed as the segmentation problem and we propose a 2-level segmentation strategy.

View Article and Find Full Text PDF

The erythrocyte sedimentation rate (ESR) is a commonly used test to screen for inflammatory conditions such as infections, autoimmune diseases, and cancers. However, it is a bulk macroscale test that requires a relatively large blood sample and takes a long time to run. Moreover, it provides no information regarding cell sizes or interactions, which can be highly variable.

View Article and Find Full Text PDF

A highly sensitive, selective, and rapid interference green synthesis based determination of potential milk adulterant melamine has been reported here. Melamine is a nitrogenous compound added to milk for mimicking proteins, consumption of which leads to kidney stones and renal failures. Melamine interacts with ascorbic acid (AA) through strong hydrogen-bonding interactions, thus resulting in an interference/interruption in the formation of silver (Ag) nanoparticles which was confirmed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM).

View Article and Find Full Text PDF

Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process.

View Article and Find Full Text PDF

Fast and automated diagnostic devices are bound to play a significant role in the on-going efforts toward malaria eradication. In this article, we present the realization of a portable device for quantitative malaria diagnostic testing at the point-of-care. The device measures optical absorbance (at λ=405  nm) of single cells flowing through a custom-designed microfluidic channel.

View Article and Find Full Text PDF

The recent rapid growth of microfluidic applications has witnessed the emergence of several particle flow focusing techniques for analysis and/or further processing. The majority of flow focusing techniques employ an external sheath fluid to achieve sample flow focusing independent of the flow rate, in contrast to sheath-free techniques. However, the introduction of a sheath fluid to surround the sample fluid has complicated the device design and fabrication, generally involving multi-layer fabrication and bonding of multiple polydimethylsiloxane (PDMS) layers.

View Article and Find Full Text PDF

Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.

View Article and Find Full Text PDF

In this article, we report on the development of indicator-impregnated agarose sensor films for colorimetric estimation of the pH of different standard buffer solutions and urine samples. In contrast to the conventional paper-based dipstick method, the presented method employs dried agarose that was infused with a chemical indicator, which when exposed to the test sample results in an appropriate chromogenic outcome. The color change was then quantified by the smart camera system.

View Article and Find Full Text PDF