Synthetic macrocyclic peptides are an emerging molecular class for both targeting intracellular protein-protein interactions (PPIs) and providing an oral modality for drug targets typically addressed by biologics. Display technologies, such as mRNA and phage display, often yield peptides that are too large and too polar to achieve passive permeability or oral bioavailability without substantial off-platform medicinal chemistry. Herein, we use DNA-encoded cyclic peptide libraries to discover a neutral nonapeptide, UNP-6457, that inhibits MDM2-p53 interaction with an IC of 8.
View Article and Find Full Text PDFImpaired activity of the chloride channel CFTR is the cause of cystic fibrosis. 14-3-3 proteins have been shown to stabilize CFTR and increase its biogenesis and activity. Here, we report the identification and mechanism of action of a macrocycle stabilizing the 14-3-3/CFTR complex.
View Article and Find Full Text PDFThe prokaryotic ATP-dependent ClpP protease, localized in the relict plastid of malaria parasite, represents a potential drug target. In the present study, we utilized in silico structure-based screening and medicinal chemistry approaches to identify a novel pyrimidine series of compounds inhibiting P. falciparum ClpP protease activity and evaluated their antiparasitic activities.
View Article and Find Full Text PDFWe have developed a strategy for synthesizing passively permeable peptidomimetic macrocycles. The cyclization chemistry centers on using aziridine aldehydes in a multicomponent reaction with peptides and isocyanides. The linker region in the resulting product contains an exocyclic amide positioned α to the peptide backbone, an arrangement that is not found among natural amino acids.
View Article and Find Full Text PDFFalcipain-2 is a papain family cysteine protease and an emerging antimalarial drug target. A pseudo-tripeptide scaffold I was designed using in silico screening tools and the three dimensional structures of falcipain-2, falcipain-3, and papain. This scaffold was investigated at four positions, T1, T2, T3, and T3', with various targeted substitutions to understand the structure-activity relationships.
View Article and Find Full Text PDFIdiopathic or immune thrombocytopenia (ITP) is a serious clinical disorder involving the destruction of platelets by macrophages. Small molecule therapeutics are highly sought after to ease the burden on current therapies derived from human sources. Earlier, we discovered that dimers of five-membered heterocycles exhibited potential to inhibit phagocytosis of human RBCs by macrophages.
View Article and Find Full Text PDFIn multiple sclerosis (MS), myelin basic protein (MBP), critical for the maintenance of myelin compaction and protecting against degradation, is known to contain concentrations of the noncoded amino acid, "citrulline", in abnormal proportions. Peptidyl arginine deiminase (PAD) catalyzes the post-translational citrullination of proteins via the deimination of Arg residues. In the central nervous system, specifically PAD2 and PAD4, are the enzymes responsible for the citrullination.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
February 2011
The title compound, C(18)H(21)NO(3)·2.33H(2)O, is the fourth reported member in a series of (1R,3S)-6,7-dimeth-oxy-1-phenyl-1,2,3,4-tetra-hydro-isoquinoline derivatives used in catalysis as ligands (or their precursors). The N-heterocycle in the structure adopts a half-chair conformation.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
July 2010
The structure of the title compound, C(13)H(14)O(2), a penta-cyclo-undecane cage derivative, exhibits unusual Csp(3)-Csp(3) single-bond lengths ranging from 1.505 (3) to 1.607 (2) Å and strained bond angles as small as 88.
View Article and Find Full Text PDF