Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures.
View Article and Find Full Text PDFAn eco-electrogenic engineered system (EES) was designed to mimic the functional role of natural aquatic ecosystems and evaluated their response to bio-electrogenic activity by cascadically interlinking three tanks with functionally diverse biota viz., floating macrophytes (Tank 1), submerged plants (Tank 2) and filter feeders (fish and snails) (Tank 3). Tank 1 showed efficient power generation (voltage (series): 0.
View Article and Find Full Text PDFThe effect of stacking multiple microbial fuel cells for stable power output was evaluated in continuous mode operation. Three single chambered air cathode CMFCs with Nafion (CMFC), Terry cotton (CMFC) as membranes and one without membrane (CMFC) were operated in continuous mode. Maximum power density (PD) and COD removal efficiency was obtained for CMFC (0.
View Article and Find Full Text PDFIn the present study, three bio-electrochemical treatment systems (BET) were designed with variations in cathode electrode placement [air exposed (BET1), partially submerged (BET2) and fully submerged (BET3)] to evaluate azo-dye based wastewater treatment at three dye loading concentrations (50, 250 and 500 mg L). Highest dye decolorization (94.5 ± 0.
View Article and Find Full Text PDFCO2 is a resource yet to be effectively utilized in the autotrophic biotechnology, not only to mitigate and moderate the anthropogenic influence on our climate, but also to steer CO2 sequestration for sustainable development and carbon neutral status. The atmospheric CO2 concentration has seen an exponential increase with the turn of the new millennia causing numerous environmental issues and also in a way feedstock crisis. To progressively regulate the growing CO2 concentrations and to incorporate the integration strategies to our existing CO2 capturing tools, all the influencing factors need to be collectively considered.
View Article and Find Full Text PDFA novel three-chambered microbial desalination cell (MDC) was designed for evaluating desalination of synthetic ground water with simultaneous energy generation and resource recovery. The specific design enabled efficient interelectrode communication by reducing the distance of separation and also maintained an appropriate surface area to volume ratio. MDC were evaluated in different circuitry modes (open and closed) to assess the desalination efficiency, bioelectricity generation, resource recovery, substrate utilization and bioelectrokinetics.
View Article and Find Full Text PDFOxygen-reduction reactions (ORR) plays a pivotal role in determining microbial fuel cells (MFC) performance. In this study, an attempt to determine the influence of the phasic availability of terminal electron acceptor (TEA) on ORR was made. Two MFCs operated with dissolved oxygen (MFC-DC) and air (MFC-SC) as TEA were constructed and analyzed in continuous mode under open and closed circuit conditions.
View Article and Find Full Text PDFA prototype bio-catalyzed electrogenic system integrated with a biological treatment process (SBR-BET) was evaluated to study specific function of anoxic condition on the electrogenic activity. A multiphasic approach was employed, where the influence of DO on bio-electrogenic activity was optimized initially, later optimal anode to cathode inter-electrode distance was enumerated. Amongst the four electrode distances evaluated, 2cm showed higher power output.
View Article and Find Full Text PDFTrends Biotechnol
November 2016
A waste biorefinery is a means to valorize waste as a renewable feedstock to recover biobased materials and energy through sustainable biotechnology. This approach holistically integrates remediation and resource recovery. Here we discuss the various technologies employable to construct a waste biorefinery platform and its place in a biobased economy.
View Article and Find Full Text PDFThe unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy.
View Article and Find Full Text PDF