Publications by authors named "Sai K Banala"

This study investigated whether short-term modifications of gait could be induced in healthy adults and whether a combination of kinetic (a compliant force resisting deviation of the foot from the prescribed footpath) and visual guidance was superior to either kinetic guidance or visual guidance alone in producing this modification. Thirty-nine healthy adults, 20-33 years old, were randomly assigned to the three groups receiving six 10-min blocks of treadmill training requiring them to modify their footpath to match a scaled-down path. Changes of the footpath, specific joint events and joint moments were analyzed.

View Article and Find Full Text PDF

Background: Robotics is emerging as a promising tool for functional training of human movement. Much of the research in this area over the last decade has focused on upper extremity orthotic devices. Some recent commercial designs proposed for the lower extremity are powered and expensive - hence, these could have limited affordability by most clinics.

View Article and Find Full Text PDF

Rationale: This case report describes the application of a novel gait retraining approach to an individual with poststroke hemiparesis. The rehabilitation protocol combined a specially designed leg orthosis (the gravity-balanced orthosis), treadmill walking, and functional electrical stimulation to the ankle muscles with the application of motor learning principles.

Case: The participant was a 58-year-old man who had a stroke more than three years before the intervention.

View Article and Find Full Text PDF

Gait training of stroke survivors is crucial to facilitate neuromuscular plasticity needed for improvements in functional walking ability. Robot assisted gait training (RAGT) was developed for stroke survivors using active leg exoskeleton (ALEX) and a force-field controller, which uses assist-as-needed paradigm for rehabilitation. In this paradigm undesirable gait motion is resisted and assistance is provided towards desired motion.

View Article and Find Full Text PDF

The gravity balancing exoskeleton, designed at University of Delaware, Newark, consists of rigid links, joints and springs, which are adjustable to the geometry and inertia of the leg of a human subject wearing it. This passive exoskeleton does not use any motors but is designed to unload the human leg joints from the gravity load over its range-of-motion. The underlying principle of gravity balancing is to make the potential energy of the combined leg-machine system invariant with configuration of the leg.

View Article and Find Full Text PDF