The tubulysin class of natural products has attracted much attention from the medicinal chemistry community due to its potent cytotoxicity against a wide range of human cancer cell lines, including significant activity in multidrug-resistant carcinoma models. As a result of their potency, the tubulysins have become an important tool for use in targeted therapy, being widely pursued as payloads in the development of novel small molecule drug conjugates (SMDCs) and antibody-drug conjugates (ADCs). A structure-based and parallel medicinal chemistry approach was applied to the synthesis of novel tubulysin analogues.
View Article and Find Full Text PDFAs part of our efforts to develop new classes of tubulin inhibitor payloads for antibody-drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays.
View Article and Find Full Text PDFAuristatins, synthetic analogues of the antineoplastic natural product Dolastatin 10, are ultrapotent cytotoxic microtubule inhibitors that are clinically used as payloads in antibody-drug conjugates (ADCs). The design and synthesis of several new auristatin analogues with N-terminal modifications that include amino acids with α,α-disubstituted carbon atoms are described, including the discovery of our lead auristatin, PF-06380101. This modification of the peptide structure is unprecedented and led to analogues with excellent potencies in tumor cell proliferation assays and differential ADME properties when compared to other synthetic auristatin analogues that are used in the preparation of ADCs.
View Article and Find Full Text PDFIn this Letter we describe the synthesis and biological evaluation of new benzosuberene analogs with structural modifications on the B-ring. The focus was initially to probe the chemical space around the B-ring C-8 position. This position was readily available for derivatization chemistry using our recently developed new synthesis for this compound class.
View Article and Find Full Text PDFWe present here a comprehensive analysis of proteases in the peptide substrate space and demonstrate its applicability for lead discovery. Aligned octapeptide substrates of 498 proteases taken from the MEROPS peptidase database were used for the in silico analysis. A multiple-category naïve Bayes model, trained on the two-dimensional chemical features of the substrates, was able to classify the substrates of 365 (73%) proteases and elucidate statistically significant chemical features for each of their specific substrate positions.
View Article and Find Full Text PDFTypically, screening collections of pharmaceutical companies contain more than a million compounds today. However, for certain high-throughput screening (HTS) campaigns, constraints posed by the assay throughput and/or the reagent costs make it impractical to screen the entire deck. Therefore, it is desirable to effectively screen subsets of the collection based on a hypothesis or a diversity selection.
View Article and Find Full Text PDFWe present a workflow that leverages data from chemogenomics based target predictions with Systems Biology databases to better understand off-target related toxicities. By analyzing a set of compounds that share a common toxic phenotype and by comparing the pathways they affect with pathways modulated by nontoxic compounds we are able to establish links between pathways and particular adverse effects. We further link these predictive results with literature data in order to explain why a certain pathway is predicted.
View Article and Find Full Text PDFWe present a novel method to better investigate adverse drug reactions in chemical space. By integrating data sources about adverse drug reactions of drugs with an established cheminformatics modeling method, we generate a data set that is then visualized with a systems biology tool. Thereby new insights into undesired drug effects are gained.
View Article and Find Full Text PDFDifferent molecular descriptors capture different aspects of molecular structures, but this effect has not yet been quantified systematically on a large scale. In this work, we calculate the similarity of 37 descriptors by repeatedly selecting query compounds and ranking the rest of the database. Euclidean distances between the rank-ordering of different descriptors are calculated to determine descriptor (as opposed to compound) similarity, followed by PCA for visualization.
View Article and Find Full Text PDFConformational changes of Klebsiella aerogenes urease apoprotein (UreABC)(3) induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins.
View Article and Find Full Text PDFIn this work we explore the possibilities of using fragment-based screening data to prioritize compounds from a full HTS library, a method we call virtual fragment linking (VFL). The ability of VFL to identify compounds of nanomolar potency based on micromolar fragment binding data was tested on 75 target classes from the WOMBAT database and succeeded in 57 cases. Further, the method was demonstrated for seven drug targets from in-house screening programs that performed both FBS of 8800 fragments and screens of the full library.
View Article and Find Full Text PDFSLIDE software, which models the flexibility of protein and ligand side chains while docking, was used to screen several large databases to identify inhibitors of Brugia malayi asparaginyl-tRNA synthetase (AsnRS), a target for anti-parasitic drug design. Seven classes of compounds identified by SLIDE were confirmed as micromolar inhibitors of the enzyme. Analogs of one of these classes of inhibitors, the long side-chain variolins, cannot bind to the adenosyl pocket of the closed conformation of AsnRS due to steric clashes, though the short side-chain variolins identified by SLIDE apparently bind isosterically with adenosine.
View Article and Find Full Text PDF