J Biochem Mol Toxicol
January 2024
The above article, published online on 5 December 2022, on Wiley Online Library (https://doi.org/10.1002/jbt.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2021
Most activity-based molecular probes are designed to target enzymes that catalyze the breaking of chemical bonds and the conversion of a unimolecular substrate into bimolecular products. However, DNA topoisomerases are a class of enzymes that alter DNA topology without producing any molecular segments during catalysis, which hinders the development of practical methods for diagnosing these key biomarkers in living cells. Here, we established a new strategy for the effective sensing of the expression levels and catalytic activities of topoisomerases in cell-free systems and human cells.
View Article and Find Full Text PDFEven though various techniques have been developed thus far for targeted delivery of therapeutics, design and fabrication of cancer biomarker-triggered disintegrable nanogels, which are exclusively composed of nucleic acid macromolecules, are still challenging nowadays. Here, we describe for the first time our creation of intelligent DNA nanogels whose backbones are sorely disintegrable by flap endonuclease 1 (FEN1), an enzymatic biomarker that is highly overexpressed in most cancer cells but not in their normal counterparts. It is the catalytic actions of intracellular FEN1 on bifurcated DNA structures that lead to the cancer-specific disintegration of our DNA nanogels and controlled release of drugs in target cancer cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots.
View Article and Find Full Text PDFAlthough shishijimicin A and its extreme potencies against an array of cancer cell lines have been known for more than a decade, its assumed DNA-cleaving mechanism has not been substantiated as yet. Herein we report studies that reveal binding and scission of double-stranded DNA by shishijimicin A. The results of these studies support the proposed hypothesis that DNA strand scissions are caused by 1,4-benzenoid diradicals formed by Bergman cycloaromatization of the enediyne core of shishijimicin A upon activation by thiols.
View Article and Find Full Text PDFFlap structure-specific endonuclease 1 (FEN1) is overexpressed in various types of human cancer cells and has been recognized as a promising biomarker for cancer diagnosis in the recent years. In order to specifically detect the abundance and activity of this cancer-overexpressed enzyme, different types of DNA-based nanodevices were created during our investigations. It is shown in our studies that these newly designed biosensors are highly sensitive and specific for FEN1 in living cells as well as in cell-free systems.
View Article and Find Full Text PDFFlap structure-specific endonuclease 1 (FEN1) is one of the enzymes that involve in Eukaryotic DNA replication and repair. Recent studies have proved that FEN1 is highly over-expressed in various types of cancer cells and is a drug target. However, a limited number of FEN1 inhibitors has been identified and approved.
View Article and Find Full Text PDFEnrichment of omega-3 fatty acids in cod liver oil via alternate operation of solvent winterization and enzymatic interesterification was attempted. Variables including separation method, solvent, oil concentration, time and temperature were optimized for the winterization. Meanwhile, Novozyme 435, Lipozyme RM IM and Lipozyme TL IM were screened for interesterification efficiency under different system air condition, time and temperature.
View Article and Find Full Text PDF