Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines.
View Article and Find Full Text PDFCholesterol is crucial to the mechanical properties of cell membranes that are important to cells' behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes.
View Article and Find Full Text PDFHigh hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated.
View Article and Find Full Text PDFWe investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed.
View Article and Find Full Text PDFAlthough silicon nanoparticles dispersed in liquids are used in various applications ranging from biolabeling to hydrogen production, their reactivities with their solvents and their catalytic properties remain still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g.
View Article and Find Full Text PDFNano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported.
View Article and Find Full Text PDFBiomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) offer significant potential as a cell source in tissue-engineering applications because of their multipotent ability. The objective of this study was to evaluate the behaviour of MSCs during the seeding phase, using four different seeding techniques (spinner flask, custom vacuum system combined with a perfused bioreactor or with an orbital shaker, and orbital shaker) with four different scaffold materials [polyglycolic acid, poly(lactic acid), calcium phosphate and chitosan-hyaluronic acid]. Scaffolds were selected for their structural and/or chemical similarity with bone or cartilage, and characterized via scanning electron microscopy (SEM) and measurement of fluid retention.
View Article and Find Full Text PDFWhen partially polymerized membranes wrinkle they exhibit a passage from a conventional buckling (due to an instability caused by chiral symmetry breaking) at low polymerization to a local roughening (due to a frustration in the local packing of the chiral molecules composing the membrane) as a function of the polymerization of the lipids aliphatic tails. This transition was found to be non-universal and here we used neutron scattering to elucidate that this behavior is due to the onset of stretching in the membrane accompanied by a bilayer thickness variation. Close to the percolation limit this deformation is plastic similar to mutated lysozymes.
View Article and Find Full Text PDFPartially polymerized membranes display a striking mechanical transition at low temperature known as the wrinkling transition. Fluorescence and scanning electron microscopy as well as profile measurements using an atomic force microscope revealed the existence of three degrees of wrinkling depending on the degree of the membrane polymerization. At low polymerization the membrane undergoes a cascade of wrinkling to form a folded phase with a characteristic exponent eta equal to 3, at intermediate polymerization, the membrane is in an intermediate-wrinkled phase (similar to the crumpling of an elastic sheet) with eta approximately 2.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2003
When polymer gels are subjected to an external stimulus such as temperature or solvent change, they undergo a phase transition often driving pattern formation. In this paper, we use an elastic model to investigate the linear stability of shrinking cylindrical NIPA gels. This model exhibits bubble and bamboo patterns.
View Article and Find Full Text PDF