Publications by authors named "Saho Kobukai"

To investigate the role of enhanced antigen presentation in dendritic cell (DC)-based immunotherapy. Here, we describe the development of a cell-penetrating mucin 1 (MUC1) antigen and its immunotherapeutic potential against tumors. After animal groups received two immunizations of MUC1-MPA(11)P-pulsed DCs, we observed a marked tumor regression compared with the mice treated with DCs alone or DCs pulsed with MUC1 peptide.

View Article and Find Full Text PDF

Unlabelled: A transfecting agent-coated hybrid imaging nanoprobe (HINP) composed of visible and near-infrared (NIR) light emitting quantum dots (QDs) tethered to superparamagnetic iron oxide (SPIO) nanoparticles was developed. The surface modification of QDs and SPIO particles and incorporation of dual QDs within the SPIO were characterized by dynamic light scattering (DLS), quartz crystal microbalance (QCM) analysis and atomic force microscopy (AFM). The optical contrasting properties of HINP were characterized by absorption and photoluminescence spectroscopy and fluorescence imaging.

View Article and Find Full Text PDF

We report the development of superparamagnetic iron oxide (SPIOs) nanoparticles and investigate the migration of SPIO-labeled dendritic cells (DCs) in a syngeneic mouse model using magnetic resonance (MR) imaging. The size of the dextran-coated SPIO is roughly 30 nm, and the DCs are capable of independent uptake of these particles, although not at levels comparable to particle uptake in the presence of a transfecting reagent. On average, with the assistance of polylysine, the particles were efficiently delivered inside DCs within one hour of incubation.

View Article and Find Full Text PDF

Background: Dendritic cells (DCs) play a major role in cell-mediated immunotherapy. In this approach, DCs are isolated from cancer patients and pulsed with exogenous and specific tumor antigens in vitro, and the antigen-loaded DCs are then transferred to the hosts to enhance the immune response against tumor targets. Clinical observations and animal studies have shown that tumors can elicit immune responses caused by tumor infiltration of T-lymphocytes.

View Article and Find Full Text PDF