Publications by authors named "Sahner J"

Soil fungi are key players in nutrient cycles as decomposers, mutualists and pathogens, but the impact of tropical rain forest transformation into rubber or oil palm plantations on fungal community structures and their ecological functions are unknown. We hypothesized that increasing land use intensity and habitat loss due to the replacement of the hyperdiverse forest flora by nonendemic cash crops drives a drastic loss of diversity of soil fungal taxa and impairs the ecological soil functions. Unexpectedly, rain forest conversion was not associated with strong diversity loss but with massive shifts in soil fungal community composition.

View Article and Find Full Text PDF

Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization).

View Article and Find Full Text PDF

Myxopyronins are α-pyrone antibiotics produced by the terrestrial bacterium Mx f50 and possess antibacterial activity against Gram-positive and Gram-negative pathogens. They target the bacterial RNA polymerase (RNAP) "switch region" as non-competitive inhibitors and display no cross-resistance to the established RNAP inhibitor rifampicin. Recent analysis of the myxopyronin biosynthetic pathway led to the hypothesis that this secondary metabolite is produced from two separate polyketide parts, which are condensed by the stand-alone ketosynthase MxnB.

View Article and Find Full Text PDF

Pseudomonas aeruginosa employs a quorum sensing (QS) communication system that makes use of small diffusible molecules. Among other effects, the QS system coordinates the formation of biofilm which decisively contributes to difficulties in the therapy of Pseudomonas infections. The present work deals with the structure-activity exploration of ureidothiophene-2-carboxylic acids as inhibitors of PqsD, a key enzyme in the biosynthetic pathway of signal molecules in the Pseudomonas QS system.

View Article and Find Full Text PDF

Myxopyronin is a natural α-pyrone antibiotic from the soil bacterium Myxococcus fulvus Mx f50. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by binding to a part of the enzyme not targeted by the clinically used rifamycins. This mode of action makes myxopyronins promising molecules for the development of novel broad-spectrum antibacterials.

View Article and Find Full Text PDF

Bacterial RNA polymerase (RNAP) represents a validated target for the development of broad-spectrum antibiotics. However, the medical value of RNAP inhibitors in clinical use is limited by the prevalence of resistant strains. To overcome this problem, we focused on the exploration of alternative target sites within the RNAP.

View Article and Find Full Text PDF

The present work deals with the optimization of an inhibitor of PqsD, an enzyme essential for Pseudomonas aeruginosa quorum sensing apparatus. Molecular docking studies, supported by biophysical methods (surface plasmon resonance, isothermal titration calorimetry, saturation transfer difference NMR), were used to illuminate the binding mode of the 5-aryl-ureidothiophene-2-carboxylic acids. Enabled to make profound predictions, structure-based optimization led to increased inhibitory potency.

View Article and Find Full Text PDF

Rising resistance against current antibiotics necessitates the development of antibacterial agents with alternative targets. The "switch region" of RNA polymerase (RNAP), addressed by the myxopyronins, could be such a novel target site. Based on a hit candidate discovered by virtual screening, a small library of 5-phenyl-3-ureidothiophene-2-carboxylic acids was synthesized resulting in compounds with increased RNAP inhibition.

View Article and Find Full Text PDF

In nature and in flow experiments particles form patterns of swirling motion in certain locations. Existing approaches identify these structures by considering the behavior of stream lines. However, in unsteady flows particle motion is described by path lines which generally gives different swirling patterns than stream lines.

View Article and Find Full Text PDF

We present an approach to analyze mixing in flow fields by extracting vortex and strain features as extremal structures of derived scalar quantities that satisfy a duality property: they indicate vortical as well as high-strain (saddletype) regions. Specifically, we consider the Okubo-Weiss criterion and the recently introduced MZ-criterion. While the first is derived from a purely Eulerian framework, the latter is based on Lagrangian considerations.

View Article and Find Full Text PDF