Ribonucleotide reductase (RNR) is an essential enzyme with a complex mechanism of allosteric regulation found in nearly all living organisms. Class I RNRs are composed of two proteins, a large α-subunit (R1) and a smaller β-subunit (R2) that exist as homodimers, that combine to form an active heterotetramer. is a hyperthermophilic bacterium with an unusual RNR encoding a 346-residue intein in the DNA sequence encoding its R2 subunit.
View Article and Find Full Text PDFBackground: Giving birth is a transformative event. Memories of the birth often remain in a woman's mind for the rest of her life. Key aspects of a mother's overall birth experience include concerns about the safety and health of the baby, and the first contact the mother has with her child.
View Article and Find Full Text PDFRibonucleotide reductase (RNR) is a central enzyme for the synthesis of DNA building blocks. Most aerobic organisms, including nearly all eukaryotes, have class I RNRs consisting of R1 and R2 subunits. The catalytic R1 subunit contains an overall activity site that can allosterically turn the enzyme on or off by the binding of ATP or dATP, respectively.
View Article and Find Full Text PDFAnabaena Sensory Rhodopsin (ASR), a microbial photoactive protein featuring the retinal chromophore in two different conformations, exhibits a pH-dependent electronic absorption spectrum. Using the recently developed CpHMD-then-QM/MM multiscale protocol applied to ASR embedded in a membrane model, the pH-induced changes in its maximum absorption wavelength have been reproduced and analyzed. While the acidic tiny red-shift is essentially correlated with the deprotonation of an aspartic acid located on the ASR extracellular side, the larger blue-shift experimentally reported at pH values larger than 5 involves a cluster of titrating residues sitting on the cytoplasmic side.
View Article and Find Full Text PDFRibonucleotide reductase (RNR) has been extensively probed as a target enzyme in the search for selective antibiotics. Here we report on the mechanism of inhibition of nine compounds, serving as representative examples of three different inhibitor classes previously identified by us to efficiently inhibit RNR. The interaction between the inhibitors and Pseudomonas aeruginosa RNR was elucidated using a combination of electron paramagnetic resonance spectroscopy and thermal shift analysis.
View Article and Find Full Text PDFRibonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis. It is essential for all organisms that use DNA as their genetic material and is a current drug target. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity.
View Article and Find Full Text PDFClass I ribonucleotide reductase (RNR) consists of a catalytic subunit (NrdA) and a radical-generating subunit (NrdB) that together catalyze reduction of ribonucleotides to their corresponding deoxyribonucleotides. NrdB from the firmicute is a unique fusion protein with N-terminal add-ons of a glutaredoxin (Grx) domain followed by an ATP-binding domain, the ATP cone. Grx, usually encoded separately from the RNR operon, is a known RNR reductant.
View Article and Find Full Text PDFRibonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site.
View Article and Find Full Text PDFBackground: A knowledge gap exists around midwives' and obstetricians' mode of delivery in comparison to the general population, and if their personal experience influences their attitudes towards different modes of delivery.
Objectives: The aim of the present study was to investigate midwives' and obstetricians' mode of delivery compared to the population at large. The second aim was to see if their mode of delivery had been influenced by the expanded indications for caesarean section as described in medical literature.
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, the building blocks for DNA synthesis, and are found in all but a few organisms. RNRs use radical chemistry to catalyze the reduction reaction. Despite RNR having evolved several mechanisms for generation of different kinds of essential radicals across a large evolutionary time frame, this initial radical is normally always channelled to a strictly conserved cysteine residue directly adjacent to the substrate for initiation of substrate reduction, and this cysteine has been found in the structures of all RNRs solved to date.
View Article and Find Full Text PDFPancreatic cancer is one of the most severe cancers and is predicted to rise up to the number two cancer killer by 2030. The ineffective treatment options available and that the cancer is silent until very late in its course are the main reasons for the poor outcome of the disease. Surgery is the only curative option but only available for 10-15 % of the patients, but even then many relapse due to metastases.
View Article and Find Full Text PDFRibonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, and represent the only de novo pathway to provide DNA building blocks. Three different classes of RNR are known, denoted I-III. Class I RNRs are heteromeric proteins built up by α and β subunits and are further divided into different subclasses, partly based on the metal content of the β-subunit.
View Article and Find Full Text PDFRibonucleotide reductases (RNRs) catalyze the only pathway for de novo synthesis of deoxyribonucleotides needed for DNA replication and repair. The vast majority of eukaryotes encodes only a class I RNR, but interestingly some eukaryotes, including the social amoeba Dictyostelium discoideum, encode both a class I and a class II RNR. The amino acid sequence of the D.
View Article and Find Full Text PDFBacillus anthracis is the causative agent of anthrax, which is associated with a high mortality rate. Like several medically important bacteria, B. anthracis lacks glutathione but encodes many genes annotated as thioredoxins, thioredoxin reductases, and glutaredoxin-like proteins.
View Article and Find Full Text PDFBackground: international estimates suggest that caesarean section on maternal request range from 4% to 18% of all caesarean section. An increasing number of surveys have investigated women's reasons for a caesarean section in the absence of a medical indication but few studies have solely studied first-time mothers motivation for this request.
Objective: to describe the underlying reasons for the desire for a caesarean section in the absence of medical indication in pregnant first-time mothers.
Bacillus anthracis is a severe mammalian pathogen encoding a class Ib ribonucleotide reductase (RNR). RNR is a universal enzyme that provides the four essential deoxyribonucleotides needed for DNA replication and repair. Almost all Bacillus spp.
View Article and Find Full Text PDFManganese lipoxygenase (MnLOX) oxidizes (11R)-hydroperoxylinolenic acid (11R-HpOTrE) to a peroxyl radical. Our aim was to compare the enzymatic oxidation of 11R-HpOTrE and octadecenoic acids with LOO-H and allylic C-H bond dissociation enthalpies of ~88 and ~87kcal/mol. Mn(III)LOX oxidized (11Z)-, (12Z)-, and (13Z)-18:1 to hydroperoxides with R configuration, but this occurred at insignificant rates (<1%) compared to 11R-HpOTrE.
View Article and Find Full Text PDFThe small flavoprotein NrdI is an essential component of the class Ib ribonucleotide reductase system in many bacteria. NrdI interacts with the class Ib radical generating protein NrdF. It is suggested to be involved in the rescue of inactivated diferric centres or generation of active dimanganese centres in NrdF.
View Article and Find Full Text PDFThe Streptococcus pyogenes genome harbors two clusters of class Ib ribonucleotide reductase genes, nrdHEF and nrdF*I*E*, and a second stand-alone nrdI gene, designated nrdI2. We show that both clusters are expressed simultaneously as two independent operons. The NrdEF enzyme is functionally active in vitro, while the NrdE*F* enzyme is not.
View Article and Find Full Text PDFIn bacterial and phage genomes, coding regions are sometimes interrupted by self-splicing introns or inteins, which can encode mobility-promoting homing endonucleases. Homing endonuclease genes are also found free-standing (not intron- or intein-encoded) in phage genomes where they are inserted in intergenic regions. One example is the HNH family endonuclease, mobE, inserted between the large (nrdA) and small (nrdB) subunit genes of aerobic ribonucleotide reductase (RNR) of T-even phages T4, RB2, RB3, RB15, and LZ7.
View Article and Find Full Text PDFThe opportunistic pathogen Pseudomonas aeruginosa, which causes serious nosocomial infections, is a gamma-proteobacterium that can live in many different environments. Interestingly P. aeruginosa encodes three ribonucleotide reductases (RNRs) that all differ from other well known RNRs.
View Article and Find Full Text PDFBacillus anthracis, the causative agent of anthrax, is a worldwide problem because of the need for effective treatment of respiratory infections shortly after exposure. One potential key enzyme of B. anthracis to be targeted by antiproliferative drugs is ribonucleotide reductase.
View Article and Find Full Text PDFWe conducted the recombination and sister chromatid exchange (SCE) assays with five chemicals (hydroxyurea (HU), resveratrol, 4-hydroxy-trans-stilbene, 3-hydroxy-trans-stilbene, and mitomycin C) in Chinese hamster cell line SPD8/V79 to confirm directly that SCE is a result of homologous recombination (HR). SPD8 has a partial duplication in exon 7 of the endogenous hprt gene and can revert to wild type by homologous recombination. All chemicals were positive in both assays except for 3-hydroxy-trans-stilbene, which was negative in both.
View Article and Find Full Text PDFNucleic Acids Res
August 2003
ADAR enzymes, adenosine deaminases that act on RNA, form a family of RNA editing enzymes that convert adenosine to inosine within RNA that is completely or largely double-stranded. Site-selective A-->I editing has been detected at specific sites within a few structured pre-mRNAs of metazoans. We have analyzed the editing selectivity of ADAR enzymes and have chosen to study the naturally edited R/G site in the pre-mRNA of the glutamate receptor subunit B (GluR-B).
View Article and Find Full Text PDF