Publications by authors named "Sahl H"

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface.

View Article and Find Full Text PDF

Many bacteria produce antimicrobial compounds such as lantibiotics to gain advantage in the competitive natural environments of microbiomes. Epilancins constitute an until now underexplored family of lantibiotics with an unknown ecological role and unresolved mode of action. We discovered production of an epilancin in the nasal isolate Staphylococcus epidermidis A37.

View Article and Find Full Text PDF

The bacterial cytoplasmic membrane separates the cell from its environment and acts as a selective permeability barrier. In addition, it functions in energy conservation, transport, signaling, and biosynthesis processes. Antimicrobial agents disrupting these functions may lead to pleiotropic effects, including leakage of low molecular weight compounds such as ions, amino acids, and ATP and subsequent membrane depolarization.

View Article and Find Full Text PDF

Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.

View Article and Find Full Text PDF

Resistance to antibiotics is an increasing problem and necessitates novel antibacterial therapies. The polyketide antibiotics cervimycin A to D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug-resistant staphylococci and vancomycin-resistant enterococci. To initiate mode of action studies, we selected cervimycin C- and D-resistant (CmR) Staphylococcus aureus strains.

View Article and Find Full Text PDF

The increasing number of resistant bacteria is a major threat worldwide, leading to the search for new antibiotic agents. One of the leading strategies is the use of antimicrobial peptides (AMPs), cationic and hydrophobic innate immune defense peptides. A major target of AMPs is the bacterial membrane.

View Article and Find Full Text PDF

Background: Mechanical thrombectomy (MT) is a standard stroke treatment for patients with large vessel occlusions (LVOs). A decisive factor for a successful outcome is, among other things, timely treatment.

Objective: The objective was to analyze several time points in relation to outcomes and/or surrogate parameters.

View Article and Find Full Text PDF

Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class.

View Article and Find Full Text PDF

The lipopeptide daptomycin is used as an antibiotic to treat severe infections with gram-positive pathogens, such as methicillin resistant Staphylococcus aureus (MRSA) and drug-resistant enterococci. Its precise mechanism of action is incompletely understood, and a specific molecular target has not been identified. Here we show that Ca-daptomycin specifically interacts with undecaprenyl-coupled cell envelope precursors in the presence of the anionic phospholipid phosphatidylglycerol, forming a tripartite complex.

View Article and Find Full Text PDF

Natural product antibiotics usually target the major biosynthetic pathways of bacterial cells and the search for new targets outside these pathways has proven very difficult. Cell wall biosynthesis maybe the most prominent antibiotic target, and ß-lactams are among the clinically most relevant antibiotics. Among cell wall biosynthesis inhibitors, glycopeptide antibiotics are a second group of important drugs, which bind to the peptidoglycan building block lipid II and prevent the incorporation of the monomeric unit into polymeric cell wall.

View Article and Find Full Text PDF

The Gram-positive cell wall consists of peptidoglycan functionalized with anionic glycopolymers, such as wall teichoic acid and capsular polysaccharide (CP). How the different cell wall polymers are assembled in a coordinated fashion is not fully understood. Here, we reconstitute Staphylococcus aureus CP biosynthesis and elucidate its interplay with the cell wall biosynthetic machinery.

View Article and Find Full Text PDF

Bacterial cells are surrounded by cell wall, whose main component is peptidoglycan (PG), a macromolecule that withstands the internal turgor of the cell. PG composition can vary considerably between species. The Gram-positive pathogen Staphylococcus aureus possesses highly crosslinked PG due to the presence of cross bridges containing five glycines, which are synthesised by the FemXAB protein family.

View Article and Find Full Text PDF

Genome mining of the Gram-negative bacterium Pseudomonas fluorescens Pf0-1 showed that the strain possesses a silent NRPS-based biosynthetic gene cluster encoding a new lipopeptide; its activation required the repair of the global regulator system. In this paper, we describe the genomics-driven discovery and characterization of the associated secondary metabolite gacamide A, a lipodepsipeptide that forms a new family of Pseudomonas lipopeptides. The compound has a moderate, narrow-spectrum antibiotic activity and facilitates bacterial surface motility.

View Article and Find Full Text PDF

Sulfide production has been proposed to be a universal defense mechanism against antibiotics in bacteria (K. Shatalin, E. Shatalina, A.

View Article and Find Full Text PDF

Multidrug resistant bacteria possess various mechanisms that can sense environmental stresses such as antibiotics and antimicrobial peptides and rapidly respond to defend themselves. Two known defense strategies are biofilm formation and lipopolysaccharide (LPS) modification. Though LPS modifications are observed in biofilm-embedded bacteria, their effect on biofilm formation is unknown.

View Article and Find Full Text PDF

The first-in-class lipopeptide antibiotic daptomycin (DAP) is highly active against Gram-positive pathogens including ß-lactam and glycopeptide resistant strains. Its molecular mode of action remains enigmatic, since a defined target has not been identified so far and multiple effects, primarily on the cell envelope have been observed. Reduced DAP susceptibility has been described in S.

View Article and Find Full Text PDF

Background: Treating wide-necked aneurysms is challenging for the interventional neuroradiologist. Recently, numerous devices dedicated to the treatment of these aneurysms have become available. We report our early experience using the pCONus2 device and present the technical success rate, clinical outcomes, and immediate angiographic occlusion rates.

View Article and Find Full Text PDF

In a loss-of-viability screen of small molecules against methicillin-resistant Staphylococcus aureus (MRSA) USA300, we found a small molecule, designated DNAC-2, which has an MIC of 8 μg ml. DNAC-2 is a quinolinol derivative that is bactericidal at 2X MIC. Macromolecular synthesis assays at 2 × MIC of DNAC-2 revealed inhibition of DNA, cell wall, RNA and protein synthesis within fifteen to thirty minutes of treatment when compared to the untreated control.

View Article and Find Full Text PDF

Drug-resistant bacterial pathogens pose an urgent public-health crisis. Here, we report the discovery, from microbial-extract screening, of a nucleoside-analog inhibitor that inhibits bacterial RNA polymerase (RNAP) and exhibits antibacterial activity against drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a natural product comprising a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine.

View Article and Find Full Text PDF

The assembly of the bacterial cell wall requires synchronization of a multitude of biosynthetic machineries and regulatory networks. The eukaryotic-like serine/threonine kinase PknB has been implicated in coordinating cross-wall formation, autolysis and cell division in Staphylococcus aureus. However, the signal molecule sensed by this kinase remained elusive so far.

View Article and Find Full Text PDF

The bacterial cell envelope is believed to be a principal target for initiating the staphylocidal pathway of chitosan. The present study was therefore designed to investigate possible changes in cell surface phenotypes related to the in vitro chitosan resistance development in the laboratory strain S. aureus SG511-Berlin.

View Article and Find Full Text PDF

The bacterial cytoplasmic membrane separates the cell from its environment and acts as a selective permeability barrier. In addition, it functions in energy conservation, transport, and biosynthesis processes. Antimicrobial agents disrupting these functions may lead to pleiotropic effects, including leakage of low molecular weight compounds such as ions, amino acids and ATP, and subsequent membrane depolarization.

View Article and Find Full Text PDF

Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including () blockage of cell wall synthesis, () membrane pore formation, and () the generation of altered membrane curvature leading to aberrant recruitment of proteins.

View Article and Find Full Text PDF

Endophytes, microorganisms living inside plant tissues, are promising producers of lead compounds for the pharmaceutical industry. However, the majority of endophytes are unculturable and therefore inaccessible for functional studies. To evaluate genetic resources of endophytes, we analyzed the biodiversity of fungal microbiome of black crowberry (Empetrum nigrum L.

View Article and Find Full Text PDF