Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine.
View Article and Find Full Text PDFWe tested the ability of platelet-derived extracellular vesicles (PEV) to promote adhesion of flowing neutrophils to endothelial cells (EC). PEV were collected from platelets stimulated with collagen-related peptide, and differential centrifugation was used to collect larger vesicles enriched for platelet membrane microvesicles (PMV) or smaller vesicles enriched for platelet exosomes (Pexo). Vesicle binding and resultant activation of neutrophils and EC were assessed by flow cytometry.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EV) released into the circulation after traumatic injury may influence complications. We thus evaluated the numbers of EV in plasma over 28 days after trauma and evaluated their pro-coagulant and inflammatory effects.
Methods And Findings: 37 patients suffering trauma with an injury severity score >15 were studied along with 24 healthy controls.
During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.
View Article and Find Full Text PDFStromal cells actively modulate the inflammatory process, in part by influencing the ability of neighboring endothelial cells to support the recruitment of circulating leukocytes. We hypothesized that podocytes influence the ability of glomerular endothelial cells (GEnCs) to recruit neutrophils during inflammation. To address this, human podocytes and human GEnCs were cultured on opposite sides of porous inserts and then treated with or without increasing concentrations of TNF-α prior to addition of neutrophils.
View Article and Find Full Text PDFNeutrophil proteases, proteinase-3 (PR3) and elastase play key roles in glomerular endothelial cell (GEC) injury during glomerulonephritis. Endothelial protease-activated receptors (PARs) are potential serine protease targets in glomerulonephritis. We investigated whether PAR1/2 are required for alterations in GEC phenotype that are mediated by PR3 or elastase during active glomerulonephritis.
View Article and Find Full Text PDFBackground: Neutrophil recruitment into glomerular tissues and reduced capillary wall integrity has been implicated in the development of vasculitic glomerulonephritis (VGN). This study investigated the stages and mechanisms through which neutrophil serine proteases (SPs), proteinase 3 (PR3) or elastase contribute to endothelial dysfunction.
Methods: Protease-induced damage to endothelium and adhesion molecule upregulation was measured by viability assays and ELISA.