Background: Gleason scoring represents the standard for diagnosis of prostate cancer (PCa) and assessment of prognosis following radical prostatectomy (RP), but it does not account for patterns in neighboring normal-appearing benign fields that may be predictive of disease recurrence.
Objective: To investigate (1) whether computer-extracted image features within tumor-adjacent benign regions on digital pathology images could predict recurrence in PCa patients after surgery and (2) whether a tumor plus adjacent benign signature (TABS) could better predict recurrence compared with Gleason score or features from benign or cancerous regions alone.
Design, Setting, And Participants: We studied 140 tissue microarray cores (0.
IEEE Trans Med Imaging
January 2016
Quantitative histomorphometry (QH) refers to the process of computationally modeling disease appearance on digital pathology images by extracting hundreds of image features and using them to predict disease presence or outcome. Since constructing a robust and interpretable classifier is challenging in a high dimensional feature space, dimensionality reduction (DR) is often implemented prior to classifier construction. However, when DR is performed it can be challenging to quantify the contribution of each of the original features to the final classification result.
View Article and Find Full Text PDFShape based active contours have emerged as a natural solution to overlap resolution. However, most of these shape-based methods are computationally expensive. There are instances in an image where no overlapping objects are present and applying these schemes results in significant computational overhead without any accompanying, additional benefit.
View Article and Find Full Text PDFQuantitative histomorphometry (QH) refers to the application of advanced computational image analysis to reproducibly describe disease appearance on digitized histopathology images. QH thus could serve as an important complementary tool for pathologists in interrogating and interpreting cancer morphology and malignancy. In the US, annually, over 60,000 prostate cancer patients undergo radical prostatectomy treatment.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
April 2014
Quantitative histomorphometry is the process of modeling appearance of disease morphology on digitized histopathology images via image-based features (e.g., texture, graphs).
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
February 2014
We introduce a novel feature descriptor to describe cancer cells called Cell Orientation Entropy (COrE). The main objective of this work is to employ COrE to quantitatively model disorder of cell/nuclear orientation within local neighborhoods and evaluate whether these measurements of directional disorder are correlated with biochemical recurrence (BCR) in prostate cancer (CaP) patients. COrE has a number of novel attributes that are unique to digital pathology image analysis.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
February 2014
Quantitative measurements of spatial arrangement of nuclei in histopathology images for different cancers has been shown to have prognostic value. Traditionally, graph algorithms (with cell/nuclei as node) have been used to characterize the spatial arrangement of these cells. However, these graphs inherently extract only global features of cell or nuclear architecture and, therefore, important information at the local level may be left unexploited.
View Article and Find Full Text PDFHuman papillomavirus-related (p16-positive) oropharyngeal squamous cell carcinoma patients develop recurrent disease, mostly distant metastasis, in approximately 10% of cases, and the remaining patients, despite cure, can have major morbidity from treatment. Identifying patients with aggressive versus indolent tumors is critical. Hematoxylin and eosin-stained slides of a microarray cohort of p16-positive oropharyngeal squamous cell carcinoma cases were digitally scanned.
View Article and Find Full Text PDFActive contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their 1) inability to resolve boundaries of intersecting objects and to 2) handle occlusion. Multiple overlapping objects are typically segmented out as a single object.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2011
Shape based active contours have emerged as a natural solution to overlap resolution. However, most of these shape-based methods are computationally expensive. There are instances in an image where no overlapping objects are present and applying these schemes results in significant computational overhead without any accompanying, additional benefit.
View Article and Find Full Text PDFCommodity graphics hardware has become a cost-effective parallel platform to solve m any general computational problems. In medical imaging and more so in digital pathology, segmentation of multiple structures on high-resolution images, is often a complex and computationally expensive task. Shape-based level set segmentation has recently emerged as a natural solution to segmenting overlapping and occluded objects.
View Article and Find Full Text PDF