Nonlocality, as established by the seminal Bell's theorem, is considered to be the most striking feature of correlations present in spacelike separated events. Its practical application in device independent protocols, such as secure key distribution, randomness certification, etc., demands identification and amplification of such correlations observed in the quantum world.
View Article and Find Full Text PDFThe principle of information causality, proposed as a generalization of no signaling principle, has efficiently been applied to outcast beyond quantum correlations as unphysical. In this Letter, we show that this principle, when utilized properly, can provide physical rationale toward structural derivation of multipartite quantum systems. In accordance with the no signaling condition, the state and effect spaces of a composite system can allow different possible mathematical descriptions, even when descriptions for the individual systems are assumed to be quantum.
View Article and Find Full Text PDFFiguring out the physical rationale behind natural selection of quantum theory is one of the most acclaimed quests in quantum foundational research. This pursuit has inspired several axiomatic initiatives to derive a mathematical formulation of the theory by identifying the general structure of state and effect space of individual systems as well as specifying their composition rules. This generic framework can allow several consistent composition rules for a multipartite system even when state and effect cones of individual subsystems are assumed to be quantum.
View Article and Find Full Text PDFNanostructures of polyvinyledenedifluoride-tetrafluoroethylene (PVDF-TrFE), a semicrystalline polymer with high piezoelectricity, results in significant enhancement of crystallinity and better device performance as sensors, actuators, and energy harvesters. Using electrospinning of PVDF to manufacture nanofibers, we demonstrate a new method to pattern high-density, highly aligned nanofibers. To further boost the charge transfer from such a bundle of nanofibers, we fabricated novel core-shell structures.
View Article and Find Full Text PDFWe demonstrate the design of thin flexible pressure sensors based on piezoelectric PVDF-TrFE (polyvinyledenedifluoride-tetrafluoroethylene) co-polymer film, which can be integrated onto a catheter, where the compact inner lumen space limit the dimensions of the pressure sensors. Previously, we demonstrated that the thin-film sensors of one micrometer thickness were shown to have better performance compared to the thicker film with no additional electrical poling or mechanical stretching due to higher crystallinity. The pressure sensors can be mass producible using standard lithography process, with excellent control of film uniformity and thickness down to one micrometer.
View Article and Find Full Text PDF