G protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK) modulate vascular tone and contraction via rapid and long-term processes. Sustained activation of these receptor types can change vascular structure, and the ability of vasculature to adapt to high pressure. In this study, the interaction between serotonin (5-HT) receptors and epidermal growth factor receptors (EGFR) on vasoconstriction and the mechanisms of EGFR transactivation and its downstream mediators were investigated.
View Article and Find Full Text PDFBackground: The aim of the study is to evaluate in vivo and in vitro effects of etanercept, a soluble tumor necrosis factor receptor, on the contractile responses of superior mesenteric artery in an experimental mesenteric ischemia and reperfusion model.
Material And Methods: After obtaining animal ethics committee approval, 24 Sprague-Dawley rats were allocated to three groups. Control group (Gr C, n = 6) underwent a sham operation, whereas ischemia/reperfusion and treatment groups underwent 90 min ischemia and 24-h reperfusion (Gr I/R, n = 12; Gr I/R+E, n = 6).
Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR.
View Article and Find Full Text PDFClinical and experimental evidence suggest that increased rates of fatty acid oxidation in the myocardium result in impaired contractile function in both normal and diabetic hearts. Glucose utilization is decreased in type 1 diabetes, and fatty acid oxidation dominates for energy production at the expense of an increase in oxygen requirement. The objective of this study was to examine the effect of chronic treatment with trimetazidine (TMZ) on cardiac mechanical function and fatty acid oxidation in streptozocin (STZ)-diabetic rats.
View Article and Find Full Text PDFThe contribution of beta-adrenoceptor subtypes to the catecholamine-mediated relaxations in gastric fundus from control and streptozotocin (STZ)-induced diabetic rats were investigated. Isolated organ bath studies and molecular techniques were used to characterize the beta-adrenoceptor subtypes mediating relaxation of rat gastric fundus. Isoprenaline-mediated relaxation was not significantly changed by nadolol (beta(1)-/beta(2)-adrenoceptor antagonist; 1 micromol/l) but only shifted to the right by SR59230A (3-(2-ethylphenoxy)-1-[[(1S)-1,2,3,4-tetrahydronaphth-1-yl]amino]-(2S)-2-propanol oxalate salt, 0.
View Article and Find Full Text PDFDespite the significant developments in the treatment of diabetes mellitus, diabetic patients still continue to suffer from cardiac complications. The increase of cardiac adrenergic drive may ultimately contribute to the development and progression of diabetic cardiomyopathy. beta-Adrenoceptors play an important role in the regulation of heart function.
View Article and Find Full Text PDFThere have been several attempts published in the literature related with orally effective insulin formulations, which are increasing in popularity. Some of the results indicate that it is possible to reduce blood glucose level by orally administered liposomal insulin formulations, but there is general need to understand the mechanism and effective components of the liposome formulations. In our study, liposomal insulin formulations were prepared using insulin (Humulin R) or protamine- containing insulin (Humulin N) with cholesterol, dipalmitoyl phosphatidylcholine (egg) (DPPC)-cholesterol mixture, and mucoadhesive agent (methyl cellulose, MC)-added DPPC-cholesterol mixture.
View Article and Find Full Text PDFPatients with chronic diabetes mellitus usually develop reductions in rate and force of cardiac contractions. Since calcium-release channels (ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) play integral roles in effecting these processes, we rationalize that alterations in their expression may underlie these defects. To test this hypothesis, right atrial appendages were obtained from diabetic (65.
View Article and Find Full Text PDFPatients with chronic diabetes mellitus usually develop reductions in rate and force of cardiac contractions. Since calcium-release channels (ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs)) play integral roles in effecting these processes, we rationalize that alterations in their expression may underlie these defects. To test this hypothesis, right atrial appendages were obtained from diabetic (65.
View Article and Find Full Text PDFBackground: Using the streptozotocin-induced diabetic rat model, we have recently showed that the expression and function of beta1-adrenoreceptor were decreased in the diabetic rat heart. However, the effect of diabetes on expression of beta-adrenoreceptors in human cardiac tissue remains undefined. Therefore, the focus of the present study was to investigate the effect of diabetes on mRNA encoding beta1- and beta2-ARs in human atrial tissues.
View Article and Find Full Text PDF