Provoked vulvodynia (PV) is characterized by localized chronic vulvar pain. It is associated with a history of recurrent inflammation, mast cell (MC) accumulation, and neuronal sprouting in the vulva. However, the mechanism of how vulvar-inflammation promotes neuronal sprouting and gene-expression adaptation in the spinal cord, leading to hypersensitivity and painful sensations, is unknown.
View Article and Find Full Text PDFProvoked vulvodynia represents a challenging chronic pain condition, characterized by its multifactorial origins. The inherent complexities of human-based studies have necessitated the use of animal models to enrich our understanding of vulvodynia's pathophysiology. This review aims to provide an exhaustive examination of the various animal models employed in this research domain.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a leading cause of morbidity and mortality in young adults, characterized by primary and secondary injury. Primary injury is the immediate mechanical damage, while secondary injury results from delayed neuronal death, often linked to mitochondrial damage accumulation. Hyperbaric oxygen therapy (HBOT) has been proposed as a potential treatment for modulating secondary post-traumatic neuronal death.
View Article and Find Full Text PDFThe etiology of idiopathic pain conditions, such as Provoked vulvodynia (PV), is multifactorial. The efficiency of venlafaxine, serotonin-noradrenaline reuptake inhibitor (SNRIs) in modulating vulvar pain led to the hypothesis that PV might involve central mechanisms. Here, we investigate whether vulvar pain is associated with gene-expression changes in mood, stress and pain systems, including amygdala (Amg), medial prefrontal cortex (mPFC), and periaqueductal gray matter (PAG).
View Article and Find Full Text PDFEpidemiological and experimental evidence demonstrates that maternal exposure to infection during gestation increases the offspring's risk of developing schizophrenia and other neurodevelopmental disorders. In addition, the NRG-ErbB4 signaling pathway is involved in brain development and neuropsychiatric disorders. Specifically, this pathway modulates the dopaminergic and GABAergic systems and is expressed in the early stages of prenatal development.
View Article and Find Full Text PDF