Hypoxic ischemic encephalopathy (HIE) is a major global cause of neonatal death and lifelong disability. Large animal translational studies of hypoxic ischemic brain injury, such as those conducted in fetal sheep, have and continue to play a key role in furthering our understanding of the cellular and molecular mechanisms of injury and developing new treatment strategies for clinical translation. At present, the quantification of neurons in histological images consists of slow, manually intensive morphological assessment, requiring many repeats by an expert, which can prove to be time-consuming and prone to human error.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Oxygen deprivation (hypoxia) and reduced blood supply (ischemia) can occur before, during or shortly after birth and can result in death, brain damage and long-term disability. Assessing neuronal survival after hypoxia-ischemia in the near-term fetal sheep brain model is essential for the development of novel treatment strategies. As manual quantification of neurons in histological images varies between different assessors and is extremely time-consuming, automation of the process is needed and has not been currently achieved.
View Article and Find Full Text PDF