Publications by authors named "Sahar Moghimi"

Rhythm perception and synchronization to periodicity hold fundamental neurodevelopmental importance for language acquisition, musical behavior, and social communication. Rhythm is omnipresent in the fetal auditory world and newborns demonstrate sensitivity to auditory rhythmic cues. During the last trimester of gestation, the brain begins to respond to auditory stimulation and to code the auditory environment.

View Article and Find Full Text PDF

Neural development leads to the evolution of electroencephalographic (EEG) characteristics during the third trimester of gestation. Theta activity in coalescence with slow waves (TA-SW) and delta brushes (DB) are key clinical neurobiomarkers in the evaluation of neurodevelopment in infants prior to full-term gestation. Both neurobiomarkers exhibit nested oscillations, a key feature of intrinsic spontaneous oscillatory activity, allowing the investigation of neural interaction development in the underlying circuits.

View Article and Find Full Text PDF

The first 1000 days of life are of paramount importance for neonatal development. Premature newborns are exposed early to the external environment, modifying the fetal exposome and leading to overexposure in some sensory domains and deprivation in others. The resulting neurodevelopmental effects may persist throughout the individual's lifetime.

View Article and Find Full Text PDF
Article Synopsis
  • Adults can naturally detect and anticipate rhythms even in silence, which is important for cognitive and social development.
  • A study examined premature newborns' neural responses to rhythmic sounds, focusing on how their brains encode rhythmic patterns and beats.
  • The findings revealed that the premature brain shows a predictive response with increased alpha wave power, indicating early signs of rhythm processing before full-term development.
View Article and Find Full Text PDF

Objective: To characterize Negative Central Activity (NCA), an overlooked electroencephalographic activity of preterm newborns and investigate its relationship with brain injuries, dysfunction, and neurodevelopmental outcome.

Methods: 109 preterm infants (23-28 weeks) were retrospectively included. NCA were selected at the negative peak on EEG.

View Article and Find Full Text PDF

The ability to extract rhythmic structure is important for the development of language, music, and social communication. Although previous studies show infants' brains entrain to the periodicities of auditory rhythms and even different metrical interpretations (e.g.

View Article and Find Full Text PDF

Rhythm is a fundamental component of the auditory world, present even during the prenatal life. While there is evidence that some auditory capacities are already present before birth, whether and how the premature neural networks process auditory rhythm is yet not known. We investigated the neural response of premature neonates at 30-34 weeks gestational age to violations from rhythmic regularities in an auditory sequence using high-resolution electroencephalography and event-related potentials.

View Article and Find Full Text PDF

The frontal sharp transient (FST) consists of transient electrical activity recorded around the transitional period from the in to ex utero environment. Although its positive predictive value is assumed, nothing is known about its functionality or origin. The objectives were (i) to define its characteristics and (ii) to develop functional hypothesis.

View Article and Find Full Text PDF

Temporal theta activity in coalescence with slow-wave (TTA-SW) is one of the first neurobiomarkers of the neurodevelopment of perisylvian networks in the electroencephalography (EEG). Dynamic changes in the microstructure and activity within neural networks are reflected in the EEG. Slow oscillation slope can reflect synaptic strength, and cross-frequency coupling (CFC), associated with several putative functions in adults, can reflect neural communication.

View Article and Find Full Text PDF

Psychological studies have shown that music has an impact on human cognitive function. We aimed to compare the performance and neural activity of pianists and non-musicians during a non-musical motor-planning task. In addition, we investigated the effect of task complexity on the characteristics of the behavioral and neural responses.

View Article and Find Full Text PDF

Temporal theta slow-wave activity (TTA-SW) in premature infants is a specific neurobiomarker of the early neurodevelopment of perisylvian networks observed as early as 24 weeks of gestational age (wGA). It is present at the turning point between non-sensory driven spontaneous networks and cortical network functioning. Despite its clinical importance, the underlying mechanisms responsible for this spontaneous nested activity and its functional role have not yet been determined.

View Article and Find Full Text PDF

Electroencephalography is the only clinically available technique that can address the premature neonate normal and pathological functional development week after week. The changes in the electroencephalogram (EEG) result from gradual structural and functional modifications that arise during the last trimester of pregnancy. Here, we review the structural changes over time that underlie the establishment of functional immature neural networks, the impact of certain anatomical specificities (fontanelles, connectivity, etc.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder that occurs many years before the first clinical symptoms. Finding more exact, significant, and valuable criteria or indices for the diagnosis of the mild form of Alzheimer's disease is very important for clinical and research purposes. Electroencephalography (EEG) and eye tracking biomarkers would provide noninvasive tools for the early detection of AD.

View Article and Find Full Text PDF

We investigated modulation of the recall time in a motivated forgetting (MF) paradigm and the neural manifestation of it through event related potential (ERP) analysis. We studied whether compared to failed attempts in suppression, partial success can potentiate control mechanisms and this might manifest, neurally as modulation of ERP components related to conscious recollection, and behaviorally as delayed recall of learnt items. We employed a modified version of the Think\No-Think paradigm with dominant number of No-Think words (cued to forget).

View Article and Find Full Text PDF

Background And Objectives: Low frequency electroencephalography (EEG) signals are associated with preparation of movement and thus provide valuable information for brain-machine interface applications. The purpose of this study was to detect movement intention from EEG signals before execution of self-paced arm reaching movements.

Methods: Ten healthy individuals were recruited.

View Article and Find Full Text PDF

Memories selectively benefit from sleep. In addition to the importance of the consolidation of relevant memories, the capacity to forget unwanted memories is also crucial. We investigated the effect of suppressing unwanted memories on electroencephalography activity of subsequent sleep using a motivated forgetting (MF) paradigm as compared with a control non-forgetting task.

View Article and Find Full Text PDF

Thalamocortical network shows self-sustained oscillations in a broad frequency range especially during slow wave sleep when cortical neurons show synchronized transitions between a quiescent down state and an active up state with beta and gamma oscillations. Inconsistent with previous models, thalamocortical spindles are separated into slow spindles (8_12 Hz) and fast spindles (13_17 Hz) with differential properties. We proposed that cortical high frequency (∼ 25 Hz) activity during up states is the key ingredient for the generation of slow spindles.

View Article and Find Full Text PDF

We investigated the neural correlates of pleasure induced by listening to highly pleasant and neutral musical excerpts using electroencephalography (EEG). Power spectrum analysis of EEG data showed a distinct gradual change in the power of low-frequency oscillations in response to highly pleasant, but not neutral, musical excerpts. Specifically, listening to highly pleasant music was associated with (i) relatively higher oscillatory activity in the theta band over the frontocentral (FC) area and in the alpha band over the parieto-occipital area, and (ii) a gradual increase in the oscillatory power over time.

View Article and Find Full Text PDF

We investigated the role of culture in processing hierarchical syntactic structures in music. We examined whether violation of non-local dependencies manifest in event related potentials (ERP) for Western and Iranian excerpts by recording EEG while participants passively listened to sequences of modified/original excerpts. We also investigated oscillatory and synchronization properties of brain responses during processing of hierarchical structures.

View Article and Find Full Text PDF

This paper proposes a real-time trajectory generation for a masticatory rehabilitation robot based on surface electromyography (SEMG) signals. We used two Gough-Stewart robots. The first robot was used as a rehabilitation robot while the second robot was developed to model the human jaw system.

View Article and Find Full Text PDF

Background and aims. Heat generated within tooth during clinical dentistry can cause thermally induced damage to hard and soft components of the tooth (enamel, dentin and pulp). Geometrical characteristics of immature teeth are different from those of mature teeth.

View Article and Find Full Text PDF

In this study, the different phases of pressure sore generation and healing are investigated through a combined analysis of high-frequency ultrasound (20 MHz) images and digital color photographs. Pressure sores were artificially induced in guinea pigs, and the injured regions were monitored for 21 days (data were obtained on days 3, 7, 14, and 21). Several statistical features of the images were extracted, relating to both the altering pattern of tissue and its superficial appearance.

View Article and Find Full Text PDF

Abstract-This article focuses on the development of a method to quantitatively assess the healing process of artificially induced pressure sores using high-frequency (20 MHz) ultrasound images. We induced sores in guinea pigs and monitored predefined regions on days 3, 7, 14, and 21 after sore generation. We extracted relevant parameters regarding the tissue echographic structure and attenuation properties.

View Article and Find Full Text PDF