Covalent amino acid modification significantly expands protein functional capability in regulating biological processes. Tyrosine residues can undergo phosphorylation, sulfation, adenylation, halogenation, and nitration. These posttranslational modifications (PTMs) result from the actions of specific enzymes: tyrosine kinases, tyrosyl-protein sulfotransferase(s), adenylate transferase(s), oxidoreductases, peroxidases, and metal-heme containing proteins.
View Article and Find Full Text PDFAberrant hyperphosphorylation of the protein phosphatase 2A catalytic subunit (PP2Ac) at Tyr has been associated with aggressive disease and poor clinical outcome in multiple cancers. However, the study of reversible phosphorylation at this site has relied entirely upon the use of antibodies-most prominently, the clone E155. Here, we provide evidence that the E155 and F-8 phospho-Tyr antibodies cannot differentiate between phosphorylated and unphosphorylated forms of PP2Ac.
View Article and Find Full Text PDFThe tumor suppressor protein phosphatase 2A (PP2A) is a serine/threonine phosphatase whose activity is inhibited in most human cancers. One of the best-characterized PP2A substrates is MYC proto-oncogene basic helix-loop-helix transcription factor (MYC), whose overexpression is commonly associated with aggressive forms of this disease. PP2A directly dephosphorylates MYC, resulting in its degradation.
View Article and Find Full Text PDFThe serine/threonine phosphatase PP2A regulates a vast portion of the phosphoproteome including pathways involved in apoptosis, proliferation and DNA damage response and PP2A inactivation is a vital step in malignant transformation. Many groups have explored the therapeutic venue of combining PP2A reactivation with kinase inhibition to counteract the very changes in tumor suppressors and oncogenes that lead to cancer development. Conversely, inhibition of PP2A to complement chemotherapy and radiation-induced cancer cell death is also an area of active investigation.
View Article and Find Full Text PDFThe rat is the preferred model for toxicology studies, and it offers distinctive advantages over the mouse as a preclinical research model including larger sample size collection, lower rates of drug clearance, and relative ease of surgical manipulation. An immunodeficient rat would allow for larger tumor size development, prolonged dosing and drug efficacy studies, and preliminary toxicologic testing and pharmacokinetic/pharmacodynamic studies in the same model animal. Here, we created an immunodeficient rat with a functional deletion of the Recombination Activating Gene 2 () gene, using genetically modified spermatogonial stem cells (SSC).
View Article and Find Full Text PDFActivation of protein phosphatase 2A (PP2A) is a promising anticancer therapeutic strategy, as this tumor suppressor has the ability to coordinately downregulate multiple pathways involved in the regulation of cellular growth and proliferation. In order to understand the systems-level perturbations mediated by PP2A activation, we carried out mass spectrometry-based phosphoproteomic analysis of two KRAS mutated non-small cell lung cancer (NSCLC) cell lines (A549 and H358) treated with a novel small molecule activator of PP2A (SMAP). Overall, this permitted quantification of differential signaling across over 1600 phosphoproteins and 3000 phosphosites.
View Article and Find Full Text PDFTargeted cancer therapies, which act on specific cancer-associated molecular targets, are predominantly inhibitors of oncogenic kinases. While these drugs have achieved some clinical success, the inactivation of kinase signaling via stimulation of endogenous phosphatases has received minimal attention as an alternative targeted approach. Here, we have demonstrated that activation of the tumor suppressor protein phosphatase 2A (PP2A), a negative regulator of multiple oncogenic signaling proteins, is a promising therapeutic approach for the treatment of cancers.
View Article and Find Full Text PDFEGFR activation is both a key molecular driver of disease progression and the target of a broad class of molecular agents designed to treat advanced cancer. Nevertheless, resistance develops through several mechanisms, including activation of AKT signaling. Though much is known about the specific molecular lesions conferring resistance to anti-EGFR-based therapies, additional molecular characterization of the downstream mediators of EGFR signaling may lead to the development of new classes of targeted molecular therapies to treat resistant disease.
View Article and Find Full Text PDF