IEEE Trans Syst Man Cybern B Cybern
April 2007
Cooperation in learning (CL) can be realized in a multiagent system, if agents are capable of learning from both their own experiments and other agents' knowledge and expertise. Extra resources are exploited into higher efficiency and faster learning in CL as compared to that of individual learning (IL). In the real world, however, implementation of CL is not a straightforward task, in part due to possible differences in area of expertise (AOE).
View Article and Find Full Text PDF