Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial.
View Article and Find Full Text PDFThe development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine.
View Article and Find Full Text PDFThe gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota.
View Article and Find Full Text PDFIntroduction: The barrier function of the gut is important for many organs and systems, including the brain. If gut permeability increases, bacterial fragments may enter the circulation, giving rise to increased systemic inflammation. Increases in bacterial translocation are reflected in higher values of blood markers, including lipopolysaccharide binding protein (LBP) and soluble cluster of differentiation 14 (sCD14).
View Article and Find Full Text PDFBackground: Irinotecan is a chemotherapeutic agent used to treat a variety of tumors, including colorectal cancer (CRC). In the intestine, it is transformed into SN-38 by gut microbial enzymes, which is responsible for its toxicity during excretion.
Objective: Our study highlights the impact of Irinotecan on gut microbiota composition and the role of probiotics in limiting Irinotecan-associated diarrhea and suppressing gut bacterial β-glucuronidase enzymes.
Intestinal microbiota and microbiota-derived metabolites play a key role in regulating the host physiology. Recently, we have identified a gut-bacterial metabolite, namely 5-hydroxyindole, as a potent stimulant of intestinal motility via its modulation of L-type voltage-gated calcium channels located on the intestinal smooth muscle cells. Dysregulation of L-type voltage-gated calcium channels is associated with various gastrointestinal motility disorders, including constipation, making L-type voltage-gated calcium channels an important target for drug development.
View Article and Find Full Text PDFBackground And Aims: The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB.
View Article and Find Full Text PDF5-methoxy tryptophan (5-MTP) is an anti-fibrotic metabolite made by fibroblasts and epithelial cells, present in a micromolar concentrations in human blood, and is associated with the progression of fibrotic kidney disease, but the mechanism is unclear. Here, we show by microscopy and functional assays that 5-MTP influences mitochondria in human peripheral blood monocyte-derived macrophages. As a result, the mitochondrial membranes are more rigid, more branched, and are protected against oxidation.
View Article and Find Full Text PDFThe brain-gut axis is increasingly recognized as an important contributing factor in the onset and progression of severe mental illnesses such as schizophrenia spectrum disorders and bipolar disorder. This study investigates associations between levels of faecal metabolites identified using H-NMR, clinical parameters, and dietary components of forty-two individuals diagnosed in a transdiagnostic approach to have severe mental illness. Faecal levels of the amino acids; alanine, leucine, and valine showed a significant positive correlation with psychiatric symptom severity as well as with dairy intake.
View Article and Find Full Text PDFThe gut microbiota is in continuous interaction with the intestinal mucosa via metabolic, neuro-immunological, and neuroendocrine pathways. Disruption in levels of antimicrobial peptides produced by the enteroendocrine cells, such as catestatin, has been associated with changes in the gut microbiota and imbalance in intestinal homeostasis. However, whether the changes in the gut microbiota have a causational role in intestinal dyshomeostasis has remained elusive.
View Article and Find Full Text PDFThe gut microbiota is in continuous interaction with the innermost layer of the gut, namely the epithelium. One of the various functions of the gut epithelium, is to keep the microbes at bay to avoid overstimulation of the underlying mucosa immune cells. To do so, the gut epithelia secrete a variety of antimicrobial peptides, such as chromogranin A (CgA) peptide catestatin (CST: hCgA).
View Article and Find Full Text PDFParkinson's disease (PD) is known to be associated with altered gastrointestinal function and microbiota composition. To date, the effect of PD medication on the gastrointestinal function and microbiota, at the site of drug absorption, the small intestine, has not been studied, although it may represent an important confounder in reported microbiota alterations observed in PD patients. To this end, healthy (non-PD) wild-type Groningen rats were employed and treated with dopamine, pramipexole (in combination with levodopa-carbidopa), or ropinirole (in combination with levodopa-carbidopa) for 14 sequential days.
View Article and Find Full Text PDFThe human gastrointestinal tract is home to trillions of microbes. Gut microbial communities have a significant regulatory role in the intestinal physiology, such as gut motility. Microbial effect on gut motility is often evoked by bioactive molecules from various sources, including microbial break down of carbohydrates, fibers or proteins.
View Article and Find Full Text PDFGut microbiota influences the clinical response of a wide variety of orally administered drugs. However, the underlying mechanisms through which drug-microbiota interactions occur are still obscure. Previously, we reported that tyrosine decarboxylating (TDC) bacteria may restrict the levels of levodopa reaching circulation in patients with Parkinson's disease (PD).
View Article and Find Full Text PDFMethylphenidate is one of the most widely used oral treatments for attention-deficit/hyperactivity disorder (ADHD). The drug is mainly absorbed in the small intestine and has low bioavailability. Accordingly, a high interindividual variability in terms of response to the treatment is known among ADHD patients treated with methylphenidate.
View Article and Find Full Text PDFA disturbed interaction between the gut microbiota and the mucosal immune system plays a pivotal role in the development of inflammatory bowel disease (IBD). Various compounds that are produced by the gut microbiota, from its metabolism of diverse dietary sources, have been found to possess anti-inflammatory and anti-oxidative properties in in vitro and in vivo models relevant to IBD. These gut microbiota-derived metabolites may have similar, or more potent gut homeostasis-promoting effects compared to the widely-studied short-chain fatty acids (SCFAs).
View Article and Find Full Text PDFAim: A "leaky" gut barrier has been implicated in the initiation and progression of a multitude of diseases, for example, inflammatory bowel disease (IBD), irritable bowel syndrome and celiac disease. Here we show how pro-hormone Chromogranin A (CgA), produced by the enteroendocrine cells, and Catestatin (CST: hCgA ), the most abundant CgA-derived proteolytic peptide, affect the gut barrier.
Methods: Colon tissues from region-specific CST-knockout (CST-KO) mice, CgA-knockout (CgA-KO) and WT mice were analysed by immunohistochemistry, western blot, ultrastructural and flowcytometry studies.
Microbial conversion of dietary or drug substrates into small bioactive molecules represents a regulatory mechanism by which the gut microbiota alters intestinal physiology. Here, we show that a wide variety of gut bacteria can metabolize the dietary supplement and antidepressant 5-hydroxytryptophan (5-HTP) to 5-hydroxyindole (5-HI) via the tryptophanase (TnaA) enzyme. Oral administration of 5-HTP results in detection of 5-HI in fecal samples of healthy volunteers with interindividual variation.
View Article and Find Full Text PDFThe human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated.
View Article and Find Full Text PDFScope: During ageing, dysbiosis in the intestinal microbiota may occur and impact health. There is a paucity of studies on the effect of fiber on the elderly microbiota and the flexibility of the aged microbiota upon prebiotic intake. It is hypothesized that chicory long-chain inulin consumption can change microbiota composition, microbial fermentation products, and immunity in the elderly.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2021
The endocannabinoid system is a metabolic pathway involved in the communication between the gut microbiota and the host. In the gut, the endocannabinoid system regulates the integrity of the intestinal barrier. A compromised integrity of the intestinal barrier is associated with several disorders such as inflammatory bowel disorder, obesity and major depressive disorder.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Gastrointestinal tract dysfunction is one of the non-motor features, where constipation is reported as the most common gastrointestinal symptom. Aromatic bacterial metabolites are attracting considerable attention due to their impact on gut homeostasis and host's physiology.
View Article and Find Full Text PDFBirth by Caesarean (C)-section impacts early gut microbiota colonization and is associated with an increased risk of developing immune and metabolic disorders. Moreover, alterations of the microbiome have been shown to affect neurodevelopmental trajectories. However, the long-term effects of C-section on neurobehavioral processes remain unknown.
View Article and Find Full Text PDFTrace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders.
View Article and Find Full Text PDFParkinson's disease is the second-most common neurodegenerative disorder worldwide. Besides deciphering the mechanisms that underlie the etiology of the disease, it is important to elucidate the factors that influence the efficacy of the treatment therapeutics. Levodopa, which remains the golden treatment of the disease, is absorbed in the proximal small intestine.
View Article and Find Full Text PDF