A novel metal-doped Zn/Cl carbon quantum dots (Zn/Cl-CQDs) was developed successfully as ratiometric fluorescent probes for the sequential on-off-on detection of riboflavin, Cu ion and thiamine. The excellent catalytic performance of the Zn/Cl-CQDs nanozyme serves as an ideal platform for sensitive detection of thiamine. Due to the addition of riboflavin to the Zn/Cl-CQDs, the blue emission peak of Zn/Cl-CQDs at 440 nm remains unaffected and used as an internal reference approach, while the green emission peak of riboflavin at 520 nm appeared and increased remarkably.
View Article and Find Full Text PDFDevelopment of an efficient, portable and simple nanosensor-based systems with reliable analytical performance for on-site monitoring of vitamin B12 (VB12) are still major problems and a challenging work for quality control of manufacturers. Herein, a new fluorescence, UV-Vis and smartphone triple mode nanosensors were designed for the simultaneous detection of VB12 with high sensitivity and accuracy. A novel nanosensor was synthesized through nicotinamide-functionalizing of carbon quantum dot (NA-CQDs) by an one-step microwave-assisted method with green approach.
View Article and Find Full Text PDFA dual-mode fluorescence and colorimetric biosensor based on nitrogen-boron co-doped carbon quantum dot (N-B CQDs) for rapid and sensitive detection of dopamine (DA) was developed. The quantum dot luminescent materials, N-B CQDs, were prepared by a one-step microwave-assisted method. The N-B CQDs were characterized using SEM, HR-TEM, XRD, FT-IR, Raman, fluorescence, and UV-Vis techniques.
View Article and Find Full Text PDFBackground: Behcet's disease involves several systems in the body. Neurological involvement is identified by different symptoms. Headache is one of the common complaints of patients with Behcet's disease.
View Article and Find Full Text PDFIn order to resolve the low adsorption capacity of the surface molecularly imprinting methods, an approach was developed for the preparation of magnetic imprinted polymers by pre-grafting the amino functional material, 3-aminopropyltriethoxysilane (APTES), on the surface of the silica coated magnetic substrate. APTES was used for amino functionalization of the silica coated Fe3O4 nanoparticles. Amino groups were used for immobilization of the template molecules on the magnetic surface and additionally to react with the terminal vinyl groups of cross-linker, ethylene glycol dimethacrylate (EGDMA), by the Michael addition reaction.
View Article and Find Full Text PDFBackground: In general, it seems that both genetic and environmental factors play important roles in the induction of neural tube defects. Lipomyelomeningocele (LipoMMC) is a rather common type of closed neural tube defect, but only limited studies have investigated the potential risk factors of this anomaly. Therefore, the purpose of this case-control study was to investigate the risk factors involved in LipoMMC formation.
View Article and Find Full Text PDF