The aim of this study was to compare the predictive performance of tree-based methods including regression tree (RT), random forest (RF) and Boosting (BT) in genomic selection. To do this, a genome comprised of five chromosomes was simulated for 1000 individuals on which 5000 single-nucleotide polymorphisms were evenly distributed. Comparison of methods was made in different scenarios of genetic architecture (number of QTL and distribution of QTL effects) and heritability level (0.
View Article and Find Full Text PDF