The interaction between photons and a single two-level atom constitutes a fundamental paradigm in quantum physics. The nonlinearity provided by the atom leads to a strong dependence of the light-matter interface on the number of photons interacting with the two-level system within its emission lifetime. This nonlinearity unveils strongly correlated quasiparticles known as photon bound states, giving rise to key physical processes such as stimulated emission and soliton propagation.
View Article and Find Full Text PDFWe observe that a weak guided light field transmitted through an ensemble of atoms coupled to an optical nanofiber exhibits quadrature squeezing. From the measured squeezing spectrum we gain direct access to the phase and amplitude of the energy-time entangled part of the two-photon wave function which arises from the strongly correlated transport of photons through the ensemble. For small atomic ensembles we observe a spectrum close to the line shape of the atomic transition, while sidebands are observed for sufficiently large ensembles, in agreement with our theoretical predictions.
View Article and Find Full Text PDFPhys Rev Lett
September 2019
I introduce and analyze chiral light-matter interaction in the ultrastrong coupling limit where the rotating-wave approximation cannot be made. Within this limit, a two-level system with a circularly polarized transition dipole interacts with a copolarized mode through rotating-wave terms. However, the counterrotating terms allow the two-level system to couple to a counterpolarized mode with the same coupling strength, i.
View Article and Find Full Text PDFWe show that strongly correlated photon transport can be observed in waveguides containing optically dense ensembles of emitters. Remarkably, this occurs even for weak coupling efficiencies. Specifically, we compute the photon transport properties through a chirally coupled system of N two-level systems driven by a weak coherent field, where each emitter can also scatter photons out of the waveguide.
View Article and Find Full Text PDFPhys Rev Lett
September 2018
Faithful conversion of quantum signals between microwave and optical frequency domains is crucial for building quantum networks based on superconducting circuits. Optoelectromechanical systems, in which microwave and optical cavity modes are coupled to a common mechanical oscillator, are a promising route towards this goal. In these systems, efficient, low-noise conversion is possible using a mechanically dark mode of the fields, but the conversion bandwidth is limited to a fraction of the cavity linewidth.
View Article and Find Full Text PDFThe spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons.
View Article and Find Full Text PDFAdvanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics.
View Article and Find Full Text PDFWe propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration.
View Article and Find Full Text PDFEngineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions.
View Article and Find Full Text PDFWe present a first-principles method to compute radiation properties of ultra-high quality factor photonic crystal cavities. Our Frequency-domain Approach for Radiation (FAR) can compute the far-field radiation pattern and quality factor of cavity modes ~ 100 times more rapidly than conventional finite-difference time domain calculations. We explain how the radiation pattern depends on the perturbation used to create the cavity and on the Bloch modes of the photonic crystal.
View Article and Find Full Text PDFWe investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate.
View Article and Find Full Text PDFWe investigate the modes of coupled waveguides in a hexagonal photonic crystal. We find that for a substantial parameter range the coupled waveguide modes have dispersion relations exhibiting multiple intersections, which we explain both intuitively and using a rigorous tight-binding argument.
View Article and Find Full Text PDFWe investigate theoretically the performance of photonic crystal fibres with coated holes as refractive index sensors. We show that coating the holes with a high-index material allows to extend the extreme sensitivities analyte-waveguide based geometries offer to the case of low-index analytes, including water-based solutions. As the sensitivity of these sensors is intricately linked to the sensitivity of the cutoff of a single inclusion to the analyte refractive index, our approach relies on the derivation of cutoff equations for coated inclusions.
View Article and Find Full Text PDF