Mechanical properties of the extracellular matrix (ECM) have been observed to influence the behavior of cells. Investigations on such an influence commonly rely on using soluble cues to alter the global intrinsic ECM properties in order to study the subsequent response of cells. This article presents an electromagnetic system for inducing a localized force gradient in an ECM, and reports the experimentally observed effect of such a force gradient on in vitro angiogenic sprouting of human microvascular endothelial cells (HMVECs).
View Article and Find Full Text PDFAdvances in mechanobiology have suggested that physiological and pathological angiogenesis may be differentiated based on the ways in which the cells interact with the extracellular matrix (ECM) that exhibits partially different mechanical properties. This warrants investigating the regulation of ECM stiffness on cell behavior using angiogenesis assays. In this article, we report the application of the technique of active manipulation of ECM stiffness to study in vitro angiogenic sprouting of human microvascular endothelial cells (HMVECs) in a microfluidic device.
View Article and Find Full Text PDFWe studied the three-dimensional cell-extracellular matrix interactions of endothelial cells that form multicellular structures called sprouts. We analyzed the data collected in-situ from angiogenic sprouting experiments and identified the differentiated interaction behavior exhibited by the tip and stalk cells. Moreover, our analysis of the tip cell lamellipodia revealed the diversity in their interaction behavior under certain conditions (e.
View Article and Find Full Text PDFThe stiffness of the extracellular matrix (ECM) is known to influence cell behavior. The ability to manipulate the stiffness of ECM has important implications in understanding how cells interact mechanically with their microenvironment. This article describes an approach to manipulating the stiffness ECM, whereby magnetic beads are embedded in the ECM through bioconjugation between the streptavidin-coated beads and the collagen fibers and then manipulated by an external magnetic field.
View Article and Find Full Text PDFIn this paper, we study the deformation, and experimentally quantify the change in stiffness, of an extracellular matrix (ECM) embedded with magnetic beads that are bio-conjugated with the collagen fibers and under the influence of an external magnetic field. We develop an analytical model of the viscoelastic behavior of this modified ECM, and design and implement a stretch test to quantify (based on statistically meaningful experiment data) the resulting changes in its stiffness induced by the external magnetic field. The analytical results are in close agreement with that obtained from the experiments.
View Article and Find Full Text PDF