Publications by authors named "Sahal D"

Background Objectives: The persistent threat of drug resistant malaria demands new cures. Low prevalence of malaria in the Indian state of Kerala compared with other proximal states led us to explore if there is any traditional practice in Kerala which may confer protection against malaria. In this context, our attention was drawn to "Pathimugam" i.

View Article and Find Full Text PDF

The emergence of drug resistance against the frontline antimalarials is a major challenge in the treatment of malaria. In view of emerging reports on drug-resistant strains of against artemisinin combination therapy, a dire need is felt for the discovery of novel compounds acting against novel targets in the parasite. In this study, we identified a novel series of quinolinepiperazinyl-aryltetrazoles (QPTs) targeting the blood stage of .

View Article and Find Full Text PDF

Phylum apicomplexan consists of parasites, such as and . These obligate intracellular parasites enter host cells an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Having identified Annickia affinis as the most potent antiplasmodial plant constituent in a hepta-herbal Agbo-iba (HHA) formula commonly used to manage malaria in Benin city, Nigeria, we have in this study attempted to identify the specialized metabolites responsible for antiplasmodial activity of A. affinis through anti-blood stage malaria parasite activity guided isolation of potent molecules from its stem bark methanol extract. After that, phenotypic effects, including stage-specific kill kinetics, were investigated.

View Article and Find Full Text PDF

In the course of evolution, living organisms have become well equipped with diverse natural products that serve important functions, including defence from biotic and abiotic stress, growth regulation, reproduction, metabolism, and epigenetic regulation. It seems to be the organism's ecological niche that influences the natural product's structural and functional diversity. Indeed, natural products constitute the nuts and bolts of molecular co-evolution and ecological relationships among different life forms.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Malaria is a leading cause of death in many developing countries, especially in sub-Saharan Africa. Nigeria is endowed with an abundance of medicinal plants, many of which are used to treat malaria. Celtis durandii Engl.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Fritillaria cirrhosa D.Don (Syn: Fritillaria roylei Hook.) (Hindi name: Kshirakakoli) is a critically endangered Himalayan medicinal plant, well documented in Ayurveda for its therapeutic uses against various disorders such as jvara (fever), kasa (respiratory tract disease) etc.

View Article and Find Full Text PDF

A series of 22 different 3,5-diarylidenetetrahydro-2H-pyran-4(3H)-ones (DATPs) were synthesized, characterized, and screened for their in vitro antiplasmodial activities against chloroquine (CQ)-sensitive Pf3D7, CQ-resistant PfINDO, and artemisinin-resistant PfMRA-1240 strains of Plasmodium falciparum. DATP 19 (3,5-bis(4-hydroxy-3,5-dimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) was found to be the most potent (IC 1.07 μM) against PfMRA-1240, whereas 21 (3,5-bis(3,4,5-trimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) showed IC values of 1.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Malaria remains one of the most important pathogenic infectious diseases. Although Africa suffers the greatest brunt, a sizeable proportion of her population still relies on herbal medicines for reasons of cost as well as the belief etched in the minds of consumers that herbal medicines are safer and more efficacious than Modern medicines. Agbo-iba; a concoction of two or more than two plants is commonly used for the management of malaria in Nigeria.

View Article and Find Full Text PDF

Medicinal plants are often used to treat malaria in different parts of Nigeria and exploiting these can unravel new therapeutic leads. This study evaluated the antiplasmodial potential of selected plants used to treat malaria in Nsukka, Enugu state, Nigeria. Leaves of three different plants () were collected for screening and two extracts .

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Aconitum heterophyllum Wall. ex Royle is a traditionally important medicinal plant having numerous therapeutic actions as documented in Ayurveda. This plant is traditionally known for combating worm infestation, fever, respiratory tract disease, vomiting, diarrhoea, diabetes, skin disorders, anaemia, and joint disorders.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Terminalia mantaly (H. Perrier) and Terminalia superba (Engl. & Diels) are sources of treatment for various diseases, including malaria and/or related symptoms in parts of Southwestern Cameroon.

View Article and Find Full Text PDF

Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread.

View Article and Find Full Text PDF

Medicinal plant metabolomics has emerged as a goldmine for the natural product chemists. It provides a pool of bioactive phytoconstituents leading to accelerated novel discoveries and the elucidation of a variety of biosynthetic pathways. Further, it also acts as an innovative tool for herbal medicine's scientific validation and quality assurance.

View Article and Find Full Text PDF

Herein, we have synthesized a series of lipophilic, halogenated-arylvinyl-1,2,4-trioxanes 8a-g (28 compounds) and assessed for their in vitro anti-plasmodial activity in Plasmodium falciparum culture using SYBRgreen-I fluorescence assay against chloroquine-resistant Pf INDO and artemisinin-resistant Pf Cam 3.1 (MRA-1240) strains. Alongside, the cell cytotoxic potential of 8a-g has also been determined against the HEK293 cell line in vitro.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Terminalia catappa L. (West Indian-Almond) is a medicinal plant used in traditional medicine for the treatment of infectious diseases. Moreover, various organic extracts prepared from this plant have been reported to exhibit antiplasmodial activity.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Cissampelos pareira is used traditionally in India as a remedy for the treatment of various diseases including malaria but the active ingredients responsible for antiplasmodial activity have not yet been investigated.

Aim Of The Study: The identification and quantification of compounds responsible for antiplasmodial activity in different parts (leaf, stem and root) of C. pareira is the target of current study.

View Article and Find Full Text PDF

A novel series of synthetic functionalized arylvinyl-1,2,4-trioxanes (8 a-p) has been prepared and assessed for their in vitro antiplasmodial activity against the chloroquine-resistant Pf INDO strain of Plasmodium falciparum by using a SYBR green-I fluorescence assay. Compounds 8 g (IC =0.051 μM; SI=589.

View Article and Find Full Text PDF

Today when the quest of new lead molecules to supply the development pipeline is driving the course of drug discovery, endophytic fungi with their outstanding biosynthetic potential seem to be highly promising avenues for natural product scientists. However, challenges such as the production of inadequate quantities of compounds, the attenuation or loss of ability of endophytes to produce the compound of interest when grown in culture and the inability of fungal endophytes to express their full biosynthetic potential in laboratory conditions have been the major constraints. These have led to the application of small chemical elicitors that induce epigenetic changes in fungi to activate their silent gene clusters optimizing the amount of metabolites of interest or inducing the synthesis of hitherto undescribed compounds.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Annona muricata (Annonaceae) is a commonly used medicinal plants in Cameroonian traditional medicines to treat various diseases including malaria. Previous studies have shown that extracts from this plant have antiplasmodial activity.

Aim Of The Study: This study aimed to explore the endophyic fungi associated with some parts of this plant for their ability to produce antiplasmodial metabolites.

View Article and Find Full Text PDF

A series of spiroisoxazoline analogues of artemisinin was synthesized by employing 1,3-dipolar cycloaddition between various in situ generated nitrile oxides and artemisitene. All the synthesized compounds were tested for their anti-proliferative and anti-malarial activities. Among the compounds tested, compound 11a was found to be potent against the HCT-15 cancer cell line with IC  = 4.

View Article and Find Full Text PDF

In the midst of transient victories by way of insecticides against mosquitoes or drugs against malaria, the most serious form of malaria, caused by , continues to be a major public health problem. The emergence of drug-resistant malaria parasites facilitated by fake medications or the use of single drugs has worsened the situation, thereby emphasizing the need for a continued search for potent, safe, and affordable new antimalarial treatments. In line with this need, we have investigated the antiplasmodial activity of 66 different extracts prepared from 10 different medicinal plants that are native to Cameroon.

View Article and Find Full Text PDF

A series of indolo[3,2-b]quinoline-C11-carboxamides were synthesized by incorporation of aminoalkyl side chains into the core of indolo[3,2-b]quinoline-C11-carboxylic acid. Their in vitro antiplasmodial evaluation against Plasmodium falciparum led to the identification of a 2-(piperidin-1-yl)ethanamine-linked analogue {2-bromo-N-[2-(piperidin-1-yl)ethyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (3 g)} (IC =1.3 μm) as the most promising compound exhibiting good selectivity indices against mammalian cell lines.

View Article and Find Full Text PDF