Publications by authors named "Sahakian V"

Owing to their rapid cooling rate and hence loss-limited propagation distance, cosmic-ray electrons and positrons (CRe) at very high energies probe local cosmic-ray accelerators and provide constraints on exotic production mechanisms such as annihilation of dark matter particles. We present a high-statistics measurement of the spectrum of CRe candidate events from 0.3 to 40 TeV with the High Energy Stereoscopic System, covering 2 orders of magnitude in energy and reaching a proton rejection power of better than 10^{4}.

View Article and Find Full Text PDF

SS 433 is a microquasar, a stellar binary system that launches collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.

View Article and Find Full Text PDF

The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e.

View Article and Find Full Text PDF

Aim: Re-manipulation of paediatric forearm fractures under general anaesthetic may be required following inadequate closed reduction under conscious sedation. Manipulation under general anaesthetic carries significant inherent risks and is preferably avoided. We assessed one institution's experience with paediatric forearm fracture reduction and investigate the incidence of re-manipulation under general anaesthetic of fractures initially managed under conscious sedation without fluoroscopy.

View Article and Find Full Text PDF

Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star's wind can accelerate particles. We report very-high-energy (VHE; [Formula: see text]) gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.

View Article and Find Full Text PDF

Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very-high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.

View Article and Find Full Text PDF

Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed.

View Article and Find Full Text PDF

Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background.

View Article and Find Full Text PDF

Objectives: Does restoration of articular congruity have any effect on long-term outcome following tibial plateau fracture?

Design: Cohort study.

Setting: A secondary hospital in New Zealand, which services a population of 150,000.

Patients: All patients with a depressed tibial plateau fracture seen over a 6 year period were invited to participate in the study.

View Article and Find Full Text PDF

Unlabelled: A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.

View Article and Find Full Text PDF

The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 pc of the Milky Way, with the H.

View Article and Find Full Text PDF

An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.

View Article and Find Full Text PDF

Gamma-ray line signatures can be expected in the very-high-energy (E(γ)>100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical γ-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H.

View Article and Find Full Text PDF

A search for a very-high-energy (VHE; ≥100  GeV) γ-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r∼45-150  pc from the Galactic center. The background-subtracted γ-ray spectrum measured with the High Energy Stereoscopic System (H.E.

View Article and Find Full Text PDF

Aim: Enhanced recovery after surgery (ERAS) programmes have been shown to accelerate and enhance functional recovery after colonic surgery. We analysed prospectively collected data to investigate potentially modifiable factors that may influence the length of stay (LOS) in the ERAS setting at a single institution.

Method: Between October 2005 and November 2008, prospective data were collected on consecutive patients who underwent elective colonic surgery without a stoma.

View Article and Find Full Text PDF

Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.

View Article and Find Full Text PDF

In a retrospective cohort review of third-party reproduction, we observed that surrogate body mass index (BMI) negatively impacts implantation rates in oocyte-donor in vitro fertilization cycles. A BMI > or =35 kg/m(2) cutoff is associated with a statistically significant decrease in pregnancy rates but not miscarriage rates.

View Article and Find Full Text PDF

The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus.

View Article and Find Full Text PDF

The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.

View Article and Find Full Text PDF

In the past few decades, several models have predicted an energy dependence of the speed of light in the context of quantum gravity. For cosmological sources such as active galaxies, this minuscule effect can add up to measurable photon-energy dependent time lags. In this Letter a search for such time lags during the High Energy Stereoscopic System observations of the exceptional very high energy flare of the active galaxy PKS 2155-304 on 28 July 2006 is presented.

View Article and Find Full Text PDF

The detection of gamma rays from the source HESS J1745-290 in the Galactic Center (GC) region with the High Energy Spectroscopic System (HESS) array of Cherenkov telescopes in 2004 is presented. After subtraction of the diffuse gamma-ray emission from the GC ridge, the source is compatible with a point source with spatial extent less than 1.2;{'}(stat) (95% C.

View Article and Find Full Text PDF

The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production.

View Article and Find Full Text PDF

Diffusive radiation is a new type of radiation predicted to occur in randomly inhomogeneous media due to the multiple scattering of pseudophotons. This theoretical effect is now observed experimentally. The radiation is generated by the passage of electrons of energy 200 KeV-2.

View Article and Find Full Text PDF

The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light. An alternative approach is to study the absorption features imprinted on the gamma-ray spectra of distant extragalactic objects by interactions of those photons with the background light photons.

View Article and Find Full Text PDF

The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way.

View Article and Find Full Text PDF