Purpose: The AAST Organ Injury Scale is widely adopted for splenic injury severity but suffers from only moderate inter-rater agreement. This work assesses SpleenPro, a prototype interactive explainable artificial intelligence/machine learning (AI/ML) diagnostic aid to support AAST grading, for effects on radiologist dwell time, agreement, clinical utility, and user acceptance.
Methods: Two trauma radiology ad hoc expert panelists independently performed timed AAST grading on 76 admission CT studies with blunt splenic injury, first without AI/ML assistance, and after a 2-month washout period and randomization, with AI/ML assistance.