Prolonged waterlogging in agricultural fields has severe consequences for the crop development and growth, and could potentially lead to higher N losses. In this study, a 3.93 ha agricultural field in Denmark was separated into two parts of well-drained (WD) and poorly-drained (PD) based on the installation depth of the tile drains.
View Article and Find Full Text PDFDespite the effectiveness of tile drain systems as a water management practice in naturally poorly drained soils, they facilitate the transport of NO-N to surface water bodies. In order to improve the risk assessment of this significant transport under increased applications of N fertilisers in agriculture, it is imperative to delineate the controlling factors and processes. The aim of this study was to acquire such knowledge using the 1D Daisy model to simulate water and N balance based on comprehensive data from a ten-year monitoring study of a tile-drained loamy field in Denmark under the actual crop rotation of winter wheat, sugar beet, spring barley, winter rape and maize.
View Article and Find Full Text PDF