Purpose: 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive.
Methods: We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene.
The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly.
View Article and Find Full Text PDFIntellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes.
View Article and Find Full Text PDFPurpose: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder.
Methods: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative.
We here describe the identification of a novel variant in the anti-inflammatory Annexin A1 protein likely to be the cause of disease in two siblings with autosomal recessive parkinsonism. The disease-segregating variant was ascertained through a combination of homozygosity mapping and whole genome sequencing and was shown to impair phagocytosis in zebrafish mutant embryos. The highly conserved variant, absent in healthy individuals and public SNP databases, affected a functional domain of the protein with neuroprotective properties.
View Article and Find Full Text PDFIn this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism.
View Article and Find Full Text PDFAutism is a common neurodevelopmental disorder estimated to affect 1 in 68 children. Many studies have shown the role of copy number variants (CNVs) as a major contributor in the etiology of autism with the overall detection rate of about 10-15 % and over 20 % when syndromic forms of autism exist. In this study, we used array CGH to identify CNVs in 15 Iranian patients with autism.
View Article and Find Full Text PDFIn this study, we described the identification of a large DNAJB2 (HSJ1) deletion in a family with recessive spinal muscular atrophy and Parkinsonism. After performing homozygosity mapping and whole genome sequencing, we identified a 3.8 kb deletion, spanning the entire DnaJ domain of the HSJ1 protein, as the disease-segregating mutation.
View Article and Find Full Text PDFBackground: Mental retardation (MR) has a prevalence of 1-3% and genetic causes are present in more than 50% of patients. Chromosomal abnormalities are one of the most common genetic causes of MR and are responsible for 4-28% of mental retardation. However, the smallest loss or gain of material visible by standard cytogenetic is about 4 Mb and for smaller abnormalities, molecular cytogenetic techniques such as array comparative genomic hybridization (array CGH) should be used.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder, after Alzheimer's disease. Genomic rearrangements are common mutations reported in PD patients. In this study, we investigated the prevalence of genomic rearrangements in a total of 232 Iranian PD patients, out of which 102 were sporadic early-onset (age-at-onset ≤ 45 years) and 51 had a family history.
View Article and Find Full Text PDFThe alpha-synuclein-caveolin 1 axis is suggested to be of role in the pathogenesis of Parkinson's disease in cell line models. The objective of this study was to analyze the homozygous haplotype compartment of the human caveolin 1 gene upstream purine complex in patients afflicted with Parkinson's disease. This complex was screened in patients with Parkinson's disease (n = 141) and compared with a group of controls (n = 760) using polymerase chain reaction and sequencing.
View Article and Find Full Text PDFCommon diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy.
View Article and Find Full Text PDFWe describe a partial duplication of the chromosome 16 short arm [46,XY,dup(16)(p11.2p13.1)] in an Iranian girl with autism, neurodevelopmental delay, mental retardation, very poor memory, and dysmorphism including sparse hair, upslanting palpebral fissures, long philtrum, micrognathia, hypotonia, small feet and hands, syndactyly of the fingers, and hypoplastic thumbs.
View Article and Find Full Text PDFHum Genet
March 2007
Autosomal recessive gene defects are arguably the most important, but least studied genetic causes of severe cognitive dysfunction. Homozygosity mapping in 78 consanguineous Iranian families with nonsyndromic autosomal recessive mental retardation (NS-ARMR) has enabled us to determine the chromosomal localization of at least 8 novel gene loci for this condition. Our data suggest that in the Iranian population NS-ARMR is very heterogeneous, and they argue against the existence of frequent gene defects that account for more than a few percent of the cases.
View Article and Find Full Text PDFVery little is known about the molecular basis of autosomal recessive MR (ARMR) because in developed countries, small family sizes preclude mapping and identification of the relevant gene defects. We therefore chose to investigate genetic causes of ARMR in large consanguineous Iranian families. This study reports on a family with six mentally retarded members.
View Article and Find Full Text PDF