Correlating transcriptional profiles with imaging-derived phenotypes has the potential to reveal possible molecular architectures associated with cognitive functions, brain development and disorders. Competitive null models built by resampling genes and self-contained null models built by spinning brain regions, along with varying test statistics, have been used to determine the significance of transcriptional associations. However, there has been no systematic evaluation of their performance in imaging transcriptomics analyses.
View Article and Find Full Text PDFThe stop-signal task (SST) is one of the most common fMRI tasks of response inhibition, and its performance measure, the stop-signal reaction-time (SSRT), is broadly used as a measure of cognitive control processes. The neurobiology underlying individual or clinical differences in response inhibition remain unclear, consistent with the general pattern of quite modest brain-behavior associations that have been recently reported in well-powered large-sample studies. Here, we investigated the potential of multivariate, machine learning (ML) methods to improve the estimation of individual differences in SSRT with multimodal structural and functional region of interest-level neuroimaging data from 9- to 11-year-olds children in the ABCD Study.
View Article and Find Full Text PDFObjective: Independent of weight status, rapid weight gain has been associated with underlying brain structure variation in regions associated with food intake and impulsivity among pre-adolescents. Yet, we lack clarity on how developmental maturation coincides with rapid weight gain and weight stability.
Methods: We identified brain predictors of 2-year rapid weight gain and its longitudinal effects on brain structure and impulsivity in the Adolescent Brain Cognitive Development Study®.
While there is substantial evidence that cannabis use is associated with differences in human brain development, most of this evidence is correlational in nature. Bayesian causal network (BCN) modeling attempts to identify probable causal relationships in correlational data using conditional probabilities to estimate directional associations between a set of interrelated variables. In this study, we employed BCN modeling in 637 adolescents from the IMAGEN study who were cannabis naïve at age 14 to provide evidence that the accelerated prefrontal cortical thinning found previously in adolescent cannabis users by Albaugh et al.
View Article and Find Full Text PDFExp Clin Psychopharmacol
December 2022
Delayed reward discounting (DRD) refers to the extent to which an individual devalues a reward based on a temporal delay and is known to be elevated in individuals with substance use disorders and many mental illnesses. DRD has been linked previously with both features of brain structure and function, as well as various behavioral, psychological, and life-history factors. However, there has been little work on the neurobiological and behavioral antecedents of DRD in childhood.
View Article and Find Full Text PDFBackground: Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention.
Methods: Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333).
Multimodal neuroimaging assessments were utilized to identify generalizable brain correlates of current body mass index (BMI) and predictors of pathological weight gain (i.e., beyond normative development) one year later.
View Article and Find Full Text PDFExposure to maltreatment during childhood is associated with structural changes throughout the brain. However, the structural differences that are most strongly associated with maltreatment remain unclear given the limited number of whole-brain studies. The present study used machine learning to identify if and how brain structure distinguished young adults with and without a history of maltreatment.
View Article and Find Full Text PDFAttention deficit/hyperactivity disorder is associated with numerous neurocognitive deficits, including poor working memory and difficulty inhibiting undesirable behaviors that cause academic and behavioral problems in children. Prior work has attempted to determine how these differences are instantiated in the structure and function of the brain, but much of that work has been done in small samples, focused on older adolescents or adults, and used statistical approaches that were not robust to model overfitting. The current study used cross-validated elastic net regression to predict a continuous measure of ADHD symptomatology using brain morphometry and activation during tasks of working memory, inhibitory control, and reward processing, with separate models for each MRI measure.
View Article and Find Full Text PDFSummary: Brain Predictability toolbox (BPt) represents a unified framework of machine learning (ML) tools designed to work with both tabulated data (e.g. brain derived, psychiatric, behavioral and physiological variables) and neuroimaging specific data (e.
View Article and Find Full Text PDFTo identify neuroimaging biomarkers of alcohol dependence (AD) from structural magnetic resonance imaging, it may be useful to develop classification models that are explicitly generalizable to unseen sites and populations. This problem was explored in a mega-analysis of previously published datasets from 2,034 AD and comparison participants spanning 27 sites curated by the ENIGMA Addiction Working Group. Data were grouped into a training set used for internal validation including 1,652 participants (692 AD, 24 sites), and a test set used for external validation with 382 participants (146 AD, 3 sites).
View Article and Find Full Text PDFImpulsivity refers to a set of traits that are generally negatively related to critical domains of adaptive functioning and are core features of numerous psychiatric disorders. The current study examined the gray and white matter correlates of five impulsive traits measured using an abbreviated version of the UPPS-P (Urgency, (lack of) Premeditation, (lack of) Perseverance, Sensation-Seeking, Positive Urgency) impulsivity scale in children aged 9 to 10 ( = 11,052) from the Adolescent Brain and Cognitive Development (ABCD) study. Linear mixed effect models and elastic net regression were used to examine features of regional gray matter and white matter tractography most associated with each UPPS-P scale; intraclass correlations were computed to examine the similarity of the neuroanatomical correlates among the scales.
View Article and Find Full Text PDFThe default mode network (DMN) and dorsal attention network (DAN) demonstrate an intrinsic "anticorrelation" in healthy adults, which is thought to represent the functional segregation between internally and externally directed thought. Reduced segregation of these networks has been proposed as a mechanism for cognitive deficits that occurs in many psychiatric disorders, but this association has rarely been tested in pre-adolescent children. The current analysis used data from the Adolescent Brain Cognitive Development study to examine the relationship between the strength of DMN/DAN anticorrelation and psychiatric symptoms in the largest sample to date of 9- to 10-year-old children (N = 6543).
View Article and Find Full Text PDFObjective: The objective of this study was to develop a machine deep learning algorithm for endoleak detection and measurement of aneurysm diameter, area, and volume from computed tomography angiography (CTA).
Methods: Digital Imaging and Communications in Medicine files representing three-phase postoperative CTA images (N = 334) of 191 unique patients undergoing endovascular aneurysm repair for infrarenal abdominal aortic aneurysm (AAA) with a variety of commercial devices were used to train a deep learning pipeline across four tasks. The RetinaNet object-detection convolutional neural network (CNN) architecture was trained to predict bounding boxes around the axial CTA slices that were then stitched together in two dimensions into a smaller region containing the aneurysm.