Background: (Mtb) carbonic anhydrases (CAs) are critical enzymes that regulate pH by converting CO to HCO , essential for Mtb's survival in acidic environments. Inhibiting γ-CAs presents a potential target for novel antituberculosis drugs with unique mechanisms of action.
Objective: This study aimed to explore the biological connections underlying Mtb pathogenesis and investigate the mechanistic actions of antituberculosis compounds targeting the Cas9 protein.
Tuberculosis (TB) is an infectious disease that primarily affects the lungs of humans and accounts for Mycobacterium tuberculosis (Mtb) bacteria as the etiologic agent. In this study, we introduce a computational framework designed to identify the important chemical features crucial for the effective inhibition of Mtb β-CAs. Through applying a mechanistic model, we elucidated the essential features pivotal for robust inhibition.
View Article and Find Full Text PDF