Publications by authors named "Sagadevan Suresh"

Tungsten oxide (WO) nanoparticles (WONPs) were prepared using beetroot (Beta vulgaris) extract. The synthesis was optimized by evaluating the effect of pH during the reduction of the WO precursor and sintering temperature. Physicochemical characterization of the formed nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance UV-visible spectroscopy.

View Article and Find Full Text PDF

Wastewater management has become necessary in this industrialized era to meet the water needs of the world. Wastewater is one of the major crises in depletion of the environment. Photocatalysis is considered as the best way to remove pollutants.

View Article and Find Full Text PDF

In this paper, we report hydroxyapatite derived from egg-shell biowaste embedded on diglycolamic acid functionalized graphitic carbon nitride nanocomposite (abbreviated as HAp@D-gCN). The compositional and morphological characteristics of HAp@D-gCN were evaluated using scanning electron microscope, X-ray diffraction, BET, FTIR techniques and surface charge using zeta potential measurement. The sorption of U(VI) species on HAp@D-gCN was investigated through batch studies as a function of pH, contact time, initial U(VI) concentration, adsorbent dosage and ionic strength.

View Article and Find Full Text PDF

Biosynthesized nanocomposites, particularly those incorporating carbon-based materials, exhibit exceptional tunability and multifunctionality, surpassing the capabilities of conventional materials in these aspects. Developing practical solutions is critical to address environmental toxins from pharmaceuticals, heavy metals, pesticides, and dyes. Biomass waste is a readily available carbon source, which emerges as a promising material for producing biochar due to its inherent advantages: abundance, low cost, and environmentally friendly nature.

View Article and Find Full Text PDF

Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes.

View Article and Find Full Text PDF

Bismuth sulfide nanoparticles (BiS NPs) were synthesized via the hydrothermal method, and reduced graphene oxide(rGO) and silver nanoparticles (Ag), which acted as substrates, have prepared using the chemical reduction method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy, and photoluminescence spectroscopy. Commercially available paracetamol-500 mg (PAM) and aspirin-300 mg (ASP) were selected for photodegradation under visible light using the as-prepared composites in an aqueous solution.

View Article and Find Full Text PDF

Gas-sensing technology has witnessed significant advancements that have been driven by the emergence of graphene quantum dots (GQDs) and their tailored nanocomposites. This comprehensive review surveys the recent progress made in the construction methods and applications of functionalized GQDs and GQD-based nanocomposites for gas sensing. The gas-sensing mechanisms, based on the Fermi-level control and charge carrier depletion layer theory, are briefly explained through the formation of heterojunctions and the adsorption/desorption principle.

View Article and Find Full Text PDF

The L-cysteine-functionalized silica (SG-CysNa) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-CysNa reached 98% at H = 6, 80 rpm, 1 mg L, and a temperature of 55 °C. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-CysNa active sites, forming a homogeneous monolayer ( = 0.

View Article and Find Full Text PDF

In this study, geopolymer originating from locally industrial byproducts as red mud (RM) was successfully prepared in the presence of different loadings of rice husk ash (RHA) used for the adsorption of methylene blue (MB) in wastewater. During geopolymerization, various mixing amounts between RM and RHA were conducted when the weight ratio of binder solution/activated alkali-metal solution (NaSiO/ NaOH 7 M) was 2.5 and the curing temperature was set at 60 °C for 24 h.

View Article and Find Full Text PDF

In recent years, intensive research efforts have focused on translating biomass waste into value-added carbon materials broadcasted for their significant role in energy and environmental applications. For the first time, high-performance carbonaceous materials for energy storage applications were developed from the multi-void structure of the boat-fruited shells of Sterculia Foetida (SF). In that view, synthesized mesoporous graphitic activated carbon (g-AC) via the combination of carbonization at various elevating temperatures of 700, 800, and 900 °C, respectively, and alkali activation by KOH, with a high specific surface area of 1040.

View Article and Find Full Text PDF

Biochar is an ample source of organic carbon prepared by the thermal breakdown of biomass. Lignocellulosic biomass is a promising precursor for biochar production, and has several applications in various industries. In addition, biochar can be applied for environmental revitalization by reducing the negative impacts through intrinsic mechanisms.

View Article and Find Full Text PDF

The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability.

View Article and Find Full Text PDF

Nickel-substituted copper ferrite nanoparticles (NP) (CuNiFeO) were prepared using a cost-effective hydrothermal method. X-ray diffraction (XRD) pattern revealed a single-phase cubic spinel structure. The increase in lattice parameters and decrease in crystallite size are associated with the replacement of Cu ions by Ni ions in the host lattice of copper ferrite.

View Article and Find Full Text PDF

The carbon dioxide (CO) crisis is one of the world's most urgent issues. Meeting the worldwide targets set for CO capture and storage (CCS) is crucial. Because it may significantly reduce energy consumption compared to traditional amine-based adsorption capture, adsorption dependant CO capture is regarded as one of the most hopeful techniques in this paradigm.

View Article and Find Full Text PDF

The present study deals with the effects of curcumin-loaded ZnO nanoparticles (NPs) embedded in graphitic-carbon nitride (g-CN) sheets for breast cancer cells. The synthesis of these sheets was carried out by a simple co-precipitation method. The physicochemical and thermal properties of the composite sheets were studied using various characterization techniques.

View Article and Find Full Text PDF

In this study, the catalytic activity of bifunctional SiO/Zr catalysts prepared by template and chelate methods using potassium hydrogen phthalate (KHF) for crude palm oil (CPO) hydrocracking to biofuels was investigated. The parent catalyst was successfully prepared by the sol-gel method, followed by the impregnation of zirconium using ZrOCl·8HO as a precursor. The morphological, structural, and textural properties of the catalysts were examined using several techniques, including electron microscopy energy-dispersive X-ray with mapping, transmission electron microscopy, X-ray diffraction, particle size analyzer (PSA), N adsorption-desorption, Fourier transform infrared-pyridine, and total and surface acidity analysis using the gravimetric method.

View Article and Find Full Text PDF

Highly-effective photocatalyst of NiO/g-CN with was successfully synthesized by using phyto-mediated-synthesized nickel nanoparticles. The preparation was initiated by synthesizing nickel nanoparticles by using stem extract under ultrasound-assisted method followed by the dispersing onto g-CN structure. The study focused on physicochemical characterization and photocatalytic activity as function of the percentage of Ni in the nanocomposite.

View Article and Find Full Text PDF

Zinc oxide (ZnO) nanorods have attracted considerable attention in recent years owing to their piezoelectric properties and potential applications in energy harvesting, sensing, and nanogenerators. Piezoelectric energy harvesting-based nanogenerators have emerged as promising new devices capable of converting mechanical energy into electric energy via nanoscale characterizations such as piezoresponse force microscopy (PFM). This technique was used to study the piezoresponse generated when an electric field was applied to the nanorods using a PFM probe.

View Article and Find Full Text PDF

The present work investigated hydrothermal synthesis of titanium/hydroxyapatite (Ti/HA) nanocomposite at varied Ti content. The synthesis was performed by coprecipitation method using CaO, ammonium dihydrogen phosphate and titanium oxide chloride precursor with the additional cetyl trimethyl ammonium chloride as templating agent, followed by hydrothermal treatment at 150 °C. The derived materials were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Graphene is a 2D carbon material known for its exceptional properties like high electron mobility and mechanical strength, making it suitable for advanced technologies in areas like electronics and sensing.
  • Azobenzene (AZO) polymers are promising for applications in light-controllable electronics due to their unique responsiveness to light, but they face challenges like low energy density and risk of aggregation.
  • Combining graphene derivatives (such as graphene oxide) with AZO polymers could create hybrid materials with improved properties for use in sensors and other optical applications, as highlighted in a recent review.
View Article and Find Full Text PDF

Diagnostic testing to identify individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in selecting appropriate treatments, saving people's lives and preventing the global pandemic of COVID-19. By testing on a massive scale, some countries could successfully contain the disease spread. Since early viral detection may provide the best approach to curb the disease outbreak, the rapid and reliable detection of coronavirus (CoV) is therefore becoming increasingly important.

View Article and Find Full Text PDF

Biphasic calcium phosphate (BCP) serves as one of the substitutes for bone as it consists of an intimate mixture of beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) in different ratios. BCP, because of its inbuilt properties such as osteoconductivity, biocompatibility, and biostability in several clinical models serves as a bone substituent for orthopedic applications. Therefore, the present study aimed to assess the effectiveness of silver (Ag) nanoparticles (NPs) combined with BCP composites for the orthopedic sector of bone tissue regeneration and growth.

View Article and Find Full Text PDF

Photocatalysis has been recognized as a feasible method in water and wastewater treatment. Compared to other methods such as adsorption and chemical oxidation, the use of photocatalyst in the advanced oxidation processes gives benefits such as a longer lifetime of the catalyst and less consumable chemicals. Currently, explorations into low-cost, effective photocatalysts for organic contaminated water are being developed.

View Article and Find Full Text PDF

The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties.

View Article and Find Full Text PDF