This paper presents a comprehensive framework for mission planning and execution with a heterogeneous multi-robot system, specifically designed to coordinate unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) in dynamic and unstructured environments. The proposed architecture evaluates the mission requirements, allocates tasks, and optimizes resource usage based on the capabilities of the available robots. It then executes the mission utilizing a decentralized control strategy that enables the robots to adapt to environmental changes and maintain formation stability in both 2D and 3D spaces.
View Article and Find Full Text PDFText classification is one domain in which the naive Bayesian (NB) learning algorithm performs remarkably well. However, making further improvement in performance using ensemble-building techniques proved to be a challenge because NB is a stable algorithm. This work shows that, while an ensemble of NB classifiers achieves little or no improvement in terms of classification accuracy, an ensemble of fine-tuned NB classifiers can achieve a remarkable improvement in accuracy.
View Article and Find Full Text PDF