Publications by authors named "Safoura Salar"

The regulation of biofilm and motile states as alternate bacterial lifestyles has been studied extensively in flagellated bacteria, where the second messenger cyclic-di-GMP (cdG) plays a crucial role. However, much less is known about the mechanisms of such regulation in motile bacteria without flagella. The bacterial type IV pilus (T4P) serves as a motility apparatus that enables to move on solid surfaces.

View Article and Find Full Text PDF

Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacterium Sinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl-accepting chemotaxis proteins (MCPs).

View Article and Find Full Text PDF

Bacterial pathogens such as Pseudomonas aeruginosa use complex regulatory networks to tailor gene expression patterns to meet complex environmental challenges. P. aeruginosa is capable of causing both acute and chronic persistent infections, each type being characterized by distinct symptoms brought about by distinct sets of virulence mechanisms.

View Article and Find Full Text PDF

Chitosan and its derivatives used in drug delivery investigations could contribute to improving peptide and protein drug delivery systems. Herein, the molecular dynamics (MD) simulation approach was applied to evaluate the important driving factors of the human insulin encapsulation into the chitosan and cholesterol-modified chitosan polymers. The MD results revealed that the native conformation of insulin was stabilized by the chitosan polymers.

View Article and Find Full Text PDF

Herein, we investigated the effect of the chitosan nanoparticles (CsNP) on the structure, dynamics, and activity of trypsin. The enzyme activity in complex with the nanoparticles slightly increased, which represents the interactions between the nanoparticles and the enzyme. The kinetic parameters of the enzyme, K and k, increased after adding the nanoparticles, resulting in a slight increase in the catalytic efficiency (k/K).

View Article and Find Full Text PDF