UV irradiation is a major driver of DNA damage and ultimately skin cancer. UV exposure leads to persistent radicals that generate ROS over prolonged periods of time. Toward the goal of developing long-lasting antioxidants that can penetrate skin, we have designed a ROS-initiated protective (RIP) reagent that, upon reaction with ROS (antioxidant activity), self-cyclizes and then releases the natural product apocynin.
View Article and Find Full Text PDFBRAF mutations occur in about 50% of melanoma patients. FDA approved BRAF and MEK inhibitors have improved the prognosis of patients with BRAF mutations. However, all responders develop resistance typically within one year of treatment.
View Article and Find Full Text PDFAntioxidant therapy is a promising treatment strategy for protecting DNA from the damage caused by reactive oxygen species (ROS). Here, we report new self-cyclizing antioxidant reagents that are selective for the hydroxyl radical. Our mechanistic investigation revealed that the reagents react with three equivalents of oxidant in a cascade reaction to form a bicyclic final product.
View Article and Find Full Text PDFAlthough the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels.
View Article and Find Full Text PDFWe designed ROS-activated cytotoxic agents (RACs) that are active against AML cancer cells. In this study, the mechanism of action and synergistic effects against cells coexpressing the AML oncogenes MLL-AF9 fusion and FLT3-ITD were investigated. One RAC (RAC1) had an IC50 value of 1.
View Article and Find Full Text PDFCurrent FDA-approved chemotherapeutic antimetabolites elicit severe side effects that warrant their improvement; therefore, we designed compounds with mechanisms of action focusing on inhibiting DNA replication rather than targeting multiple pathways. We previously discovered that 5-(α-substituted-2-nitrobenzyloxy)methyluridine-5'-triphosphates were exquisite DNA synthesis terminators; therefore, we synthesized a library of 35 thymidine analogs and evaluated their activity using an MTT cell viability assay of MCF7 breast cancer cells chosen for their vulnerability to these nucleoside derivatives. Compound 3a, having an α-tert-butyl-2-nitro-4-(phenyl)alkynylbenzyloxy group, showed an IC50 of 9±1μM.
View Article and Find Full Text PDFSome cancers, like acute myeloid leukemia (AML), use reactive oxygen species to endogenously activate cell proliferation and angiogenic signaling cascades. Thus many cancers display increases in reactive oxygen like hydrogen peroxide concentrations. To translate this finding into a therapeutic strategy we designed new hydrogen peroxide-activated agents with two key molecular pharmacophores.
View Article and Find Full Text PDF