Background: Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production.
Results: We report on the de novo development of a composite skeletal muscle cDNA microarray, comprising 5500 clones from two developmentally distinct cDNA libraries (longissimus dorsi of a 50-day porcine foetus and the gastrocnemius of a 3-day-old pig).
Among genes involved in sex determination and differentiation, DMRT1 is the only one characterized to date containing a domain (the DM domain) that is conserved between phyla. To study DMRT1 transcriptional regulation within mammalian phyla, we generated transgenic mice that express green fluorescent protein (GFP) or Cre-recombinase (Cre) under the control of 2.6 kb of pig DMRT1 5' flanking sequences (pDMRT1p-GFP and pDMRT1p-Cre, respectively).
View Article and Find Full Text PDFAn investigation into the role of CD45 isoforms in T cell antigen receptor signal transduction was carried out by transfecting CD45-negative CD4(+)CD8(+) HPB-ALL T cells with the CD45R0, CD45RBC, and CD45RABC isoforms. Fluorescence resonance energy transfer analysis showed that the CD45R0 isoform, but not the CD45RBC or CD45RABC isoforms, was found as homodimers and also preferentially associated with CD4 and CD8 at the cell-surface. A comparison was therefore made of T cell antigen receptor signaling between sub-clones expressing either CD45R0 or CD45RBC.
View Article and Find Full Text PDF