Publications by authors named "Saffran D"

Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties.

View Article and Find Full Text PDF

Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors.

View Article and Find Full Text PDF

Aberrant activation of the Wnt pathway has been implicated in the development and formation of many cancers. TNKS inhibition has been shown to antagonize Wnt signaling via Axin stabilization in APC mutant colon cancer cell lines. We employed structure-based design to identify a series of 2-aminopyridine oxazolidinones as potent and selective TNKS inhibitors.

View Article and Find Full Text PDF

Tankyrases (TNKS1 and TNKS2) are proteins in the poly ADP-ribose polymerase (PARP) family. They have been shown to directly bind to axin proteins, which negatively regulate the Wnt pathway by promoting β-catenin degradation. Inhibition of tankyrases may offer a novel approach to the treatment of APC-mutant colorectal cancer.

View Article and Find Full Text PDF

Breast cancer is the most prevalent malignancy affecting women and ranks second in cancer-related deaths, in which death occurs primarily from metastatic disease. Triple-negative breast cancer (TNBC) is a more aggressive and metastatic subtype of breast cancer that is initially responsive to treatment of microtubule-targeting agents (MTA) such as taxanes. Recently, we reported the characterization of AMG 900, an orally bioavailable, potent, and highly selective pan-Aurora kinase inhibitor that is active in multidrug-resistant cell lines.

View Article and Find Full Text PDF

Aberrant activation of the Wnt pathway is believed to drive the development and growth of some cancers. The central role of CK1γ in Wnt signal transduction makes it an attractive target for the treatment of Wnt-pathway dependent cancers. We describe a structure-based approach that led to the discovery of a series of pyridyl pyrrolopyridinones as potent and selective CK1γ inhibitors.

View Article and Find Full Text PDF

Compound 1 [(E)-4-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1S,4S)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], a new, potent, selective anaplastic lymphoma kinase (ALK) inhibitor with potential application for the treatment of cancer, was selected as candidate to advance into efficacy studies in mice. However, the compound underwent mouse-specific enzymatic hydrolysis in plasma to a primary amine product (M1). Subsequent i.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined the effects of motesanib, an agent targeting specific growth factor receptors, on five human non-small-cell lung cancer (NSCLC) models to determine its ability to inhibit tumor growth, both alone and with chemotherapy agents.
  • - Results showed that motesanib effectively reduced tumor growth in all models tested and worked synergistically with cisplatin and docetaxel, enhancing the overall inhibition of tumor growth compared to using either treatment alone.
  • - The anti-cancer effects of motesanib, primarily through reducing blood vessel growth in tumors, highlight its potential as a promising treatment option for NSCLC, particularly when used in combination with standard chemotherapy drugs.
View Article and Find Full Text PDF

A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • Angiogenesis is crucial for breast cancer growth, and VEGF is a key factor regulating blood vessel formation; this study explores the effects of motesanib, a new oral inhibitor targeting multiple growth factor receptors.
  • In experiments, mice with different breast cancer tumor types were treated with varying doses of motesanib, alone or alongside chemotherapy drugs like docetaxel, doxorubicin, and tamoxifen.
  • Results showed that motesanib significantly reduces tumor growth and blood vessel density, especially when combined with docetaxel or tamoxifen, indicating its potential as an effective treatment for breast cancer.
View Article and Find Full Text PDF

We identified TMPRSS2 as a gene that is down-regulated in androgen-independent prostate cancer xenograft tissue derived from a bone metastasis. Using specific monoclonal antibodies, we show that the TMPRSS2-encoded serine protease is expressed as a Mr 70,000 full-length form and a cleaved Mr 32,000 protease domain. Mutation of Ser-441 in the catalytic triad shows that the proteolytic cleavage is dependent on catalytic activity, suggesting that it occurs as a result of autocleavage.

View Article and Find Full Text PDF

Prostate stem-cell antigen (PSCA) is a cell-surface antigen expressed in normal prostate and overexpressed in prostate cancer tissues. PSCA expression is detected in over 80% of patients with local disease, and elevated levels of PSCA are correlated with increased tumor stage, grade, and androgen independence, including high expression in bone metastases. We evaluated the therapeutic efficacy of anti-PSCA mAbs in human prostate cancer xenograft mouse models by using the androgen-dependent LAPC-9 xenograft and the androgen-independent recombinant cell line PC3-PSCA.

View Article and Find Full Text PDF

The detection and treatment of prostate cancer has been markedly improved by the use of Prostate-Specific Antigen (PSA) as a serological biomarker for disease. However, even after surgical intervention and hormone ablation therapy, a significant proportion of patients progress to advanced metastatic disease, for which there is no cure. An important goal has become the identification of antigens in advanced stage prostate cancer that represent targets for therapy.

View Article and Find Full Text PDF

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein.

View Article and Find Full Text PDF

Intratumoral (i.t.) injection of a plasmid DNA vector encoding the murine interleukin-2 (IL-2) gene was used to treat established renal cell carcinoma (Renca) tumors in BALB/c mice.

View Article and Find Full Text PDF

Tumor cells insensitive to lysis through the Fas and TNF pathways were injected either subcutaneously or into the peritoneal cavities of allogeneic perforin-less (P0) and perforin wild-type (P2) mice. In three of four cases, the tumors were rejected equally rapidly in both strains of mice. Rejection was accompanied by vigorous in vitro cytotoxicity in P2, but not in P0 mice.

View Article and Find Full Text PDF

Biological function of the BCR-ABL oncogene is dependent on its activated tyrosine kinase. Mutations that inactivate the SRC homology 2 (SH2) domain, the GRB2-binding site in BCR, or the major autophosphorylation site of the kinase domain selectively disrupt downstream signaling but not tyrosine kinase activity. Despite a loss of fibroblast transformation activity, all three mutants retain the ability to render hematopoietic cell lines growth factor independent and transform primary bone marrow cells in vitro.

View Article and Find Full Text PDF

The gene responsible for X-linked agammaglobulinemia (XLA) has been recently identified to code for a cytoplasmic tyrosine kinase (Bruton's agammaglobulinemia tyrosine kinase, BTK), required for normal B cell development. BTK, like many other cytoplasmic tyrosine kinases, contains Src homology domains (SH2 and SH3), and catalytic kinase domain. SH3 domains are important for the targeting of signaling molecules to specific subcellular locations.

View Article and Find Full Text PDF

The cytoplasmic tyrosine kinase, Bruton's tyrosine kinase (Btk, formerly bpk or atk), is crucial for B cell development. Loss of kinase activity results in the human immunodeficiency, X-linked agammaglobulinemia, characterized by a failure to produce B cells. In the murine X-linked immunodeficiency (XID), B cells are present but respond abnormally to activating signals.

View Article and Find Full Text PDF

Long-term bone marrow cultures have been useful in determining gene expression patterns in pre-B cells and in the identification of cytokines such as interleukin 7 (IL-7). We have developed a culture system to selectively grow populations of B lineage restricted progenitors (pro-B cells) from murine bone marrow. Pro-B cells do not grow in response to IL-7, Steel locus factor (SLF), or a combination of the two.

View Article and Find Full Text PDF

We describe a novel cytoplasmic tyrosine kinase, termed BPK (B cell progenitor kinase), which is expressed in all stages of the B lineage and in myeloid cells. BPK has classic SH1, SH2, and SH3 domains, but lacks myristylation signals and a regulatory phosphorylation site corresponding to tyrosine 527 of c-src. BPK has a long, basic amino-terminal region upstream of the SH3 domain.

View Article and Find Full Text PDF