Publications by authors named "Safenkova I"

To ensure the safety of foodstuffs, widespread non-laboratory monitoring for pathogenic contaminants is in demand. A suitable technique for this purpose is lateral flow immunoassay (LFIA) which combines simplicity, rapidity, and productivity with specific immune detection. This study considered three developed formats of LFIA for Typhimurium, a priority pathogenic contaminant of milk.

View Article and Find Full Text PDF

is a bacterial phytopathogen that causes soft and black rot and actively spreads worldwide. Our study is the first development of immunoassays for detecting . We immunized rabbits and obtained serum with an extremely high titer (1:10).

View Article and Find Full Text PDF

Loop-mediated isothermal amplification (LAMP) is a rapid and efficient method for DNA amplification, producing concatemers of varying lengths (amplicons). This study explores the characterization of LAMP amplicons using asymmetric flow field-flow fractionation (AF4) and their realization in LAMP - lateral flow assay (LFA) for point-of-care diagnostics. We examined LAMP products from the invA gene of Salmonella enterica using two specific primer sets and three methods: fluorescent staining with SYBR Green, electrophoretic detection, and AF4.

View Article and Find Full Text PDF

A promising and sought-after class of nanozymes for various applications is Pt-containing nanozymes, primarily Au@Pt, due to their easy preparation and remarkable catalytic properties. This study aimed to explore the freeze-thaw method for functionalizing Pt-containing nanozymes with oligonucleotides featuring a polyadenine anchor. Spherical gold nanoparticles ([Au]NPs) were synthesized and subsequently used as seeds to produce urchin-like Au@Pt nanoparticles ([Au@Pt]NPs) with an average diameter of 29.

View Article and Find Full Text PDF

Neurofilaments are neuron-specific proteins that belong to the intermediate filament (IFs) protein family, with the neurofilament light chain protein (NFL) being the most abundant. The IFs structure typically includes a central coiled-coil rod domain comprised of coils 1A, 1B, and 2, separated by linker regions. The thermal stability of the IF molecule plays a crucial role in its ability for self-association.

View Article and Find Full Text PDF

CRISPR/Cas12a is a potent biosensing tool known for its high specificity in DNA analysis. Cas12a recognizes the target DNA and acquires nuclease activity toward single-stranded DNA (ssDNA) probes. We present a straightforward and versatile approach to transforming common Cas12a-cleavable DNA probes into enhancing tools for fluorescence anisotropy (FA) measurements.

View Article and Find Full Text PDF

In this study, we developed a sensitive immunochromatographic analysis (ICA) of the bacterial pathogen contaminating food products and causing foodborne illness. The ICA of was performed using Au@Pt nanozyme as a label ensuring both colorimetric detection and catalytic amplification of the analytical signal due to nanozyme peroxidase-mimic properties. The enhanced ICA enabled the detection of cells with the visual limit of detection (LOD) of 2 × 10 CFU/mL, which outperformed the LOD in the ICA with traditional gold nanoparticles by two orders of magnitude.

View Article and Find Full Text PDF

CRISPR/Cas12-based biosensors are emerging tools for diagnostics. However, their application of heterogeneous formats needs the efficient detection of Cas12 activity. We investigated DNA probes attached to the microplate surface and cleaved by Cas12a.

View Article and Find Full Text PDF

Biosensors based on endonuclease Cas12 provide high specificity in pathogen detection. Sensitive detection using Cas12-based assays can be achieved using trans-cleaved DNA probes attached to simply separated carriers, such as magnetic particles (MPs). The aim of this work was to compare polyA, polyC, and polyT single-stranded (ss) DNA with different lengths (from 10 to 145 nt) as trans-target probes were immobilized on streptavidin-covered MPs.

View Article and Find Full Text PDF

Sequence-specific endonuclease Cas12-based biosensors have rapidly evolved as a strong tool to detect nucleic acids. Magnetic particles (MPs) with attached DNA structures could be used as a universal platform to manipulate the DNA-cleavage activity of Cas12. Here, we propose nanostructures of trans- and cis-DNA targets immobilized on the MPs.

View Article and Find Full Text PDF

Isothermal amplifications allow for the highly sensitive detection of nucleic acids, bypassing the use of instrumental thermal cycling. This work aimed to carry out an experimental comparison of the four most promising techniques: recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) coupled with lateral flow test or coupled with additional amplification based on CRISPR/Cas12a resulting from the fluorescence of the Cas12a-cleaved probe. To compare the four amplification techniques, we chose the bacterial phytopathogen (causative agent of fire blight), which has a quarantine significance in many countries and possesses a serious threat to agriculture.

View Article and Find Full Text PDF

Magnetic beads (MBs) are often considered as an effective carrier in heterogeneous assays due to the simplicity of separation and washing, and the ability to increase and control the surface area. However, the effect of the MBs surface on the analytical parameters is poorly characterized and is often postulated from intuitive considerations. Herein, experimental evaluation through the comparison of MBs and microwell plate was carried out using the miRNA-141 (biomarker for cancer) as a target, the detection of which was performed by chemiluminescent assay with a homogeneous mismatched catalytic hairpin assembly (mCHA) reaction.

View Article and Find Full Text PDF

Short oligonucleotides are widely used for the construction of aptamer-based sensors and logical bioelements to modulate aptamer-ligand binding. However, relationships between the parameters (length, location of the complementary region) of oligonucleotides and their influence on aptamer-ligand interactions remain unclear. Here, we addressed this task by comparing the effects of short complementary oligonucleotides (ssDNAs) on the structure and ligand-binding ability of an aptamer and identifying ssDNAs' features that determine these effects.

View Article and Find Full Text PDF

CRISPR-Cas12-based biosensors are a promising tool for the detection of nucleic acids. After dsDNA-target-activated Cas12 cleaves the ssDNA probe, a lateral flow test (LFT) is applied for rapid, simple, and out-of-laboratory detection of the cleaved probe. However, most of the existing approaches of LFT detection have disadvantages related to inverted test/control zones in which the assay result depends not only on the cleavage of the probe but also on the second factor: the binding of the non-cleaved probe in the control zone.

View Article and Find Full Text PDF

Determining the presence of antibodies to the SARS-CoV-2 antigens is the best way to identify infected people, regardless of the development of symptoms of COVID-19. The nucleoprotein (NP) of the SARS-CoV-2 is an immunodominant antigen of the virus; anti-NP antibodies are detected in persons previously infected with the virus with the highest titers. Many test systems for detecting antibodies to SARS-CoV-2 contain NP or its fragments as antigen.

View Article and Find Full Text PDF

The detection limit of lateral flow immunoassay (LFIA) is largely determined by the properties of the label used. We compared four nanoparticle labels differing in their chemical composition and colour: (1) gold nanoparticles (Au NPs), red; (2) Au-core/Pt-shell nanoparticles (Au@Pt NPs), black; (3) latex nanoparticles (LPs), green; and (4) magnetic nanoparticles (MPs), brown. The comparison was carried out using one target analyte-, the causal bacterial agent of fire blight.

View Article and Find Full Text PDF

Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible.

View Article and Find Full Text PDF

Verifying the authenticity of food products is essential due to the recent increase in counterfeit meat-containing food products. The existing methods of detection have a number of disadvantages. Therefore, simple, cheap, and sensitive methods for detecting various types of meat are required.

View Article and Find Full Text PDF

The combination of recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a strong diagnostic tool for rapid pathogen detection in resource-limited conditions. Here, we compared two methods generating labeled RPA amplicons following their detection by LFT: (1) the basic one with primers modified with different tags at the terminals and (2) the nuclease-dependent one with the primers and labeled oligonucleotide probe for nuclease digestion that was recommended for the high specificity of the assay. Using both methods, we developed an RPA-LFT assay for the detection of worldwide distributed phytopathogen-alfalfa mosaic virus (AMV).

View Article and Find Full Text PDF

A multiplex assay based on recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a desirable tool for many areas. This multiplex assay could be efficiently realized using single-stranded (ss) DNAs located in separate zones on the test strip and bound complementary ssDNA tags of double-stranded (ds) DNA amplicons. Here, we investigate how to enrich multiplex assay capabilities using ssDNAs.

View Article and Find Full Text PDF

We report the approach for the detection of Au@Pt core@shell nanoparticles (nanozymes) with peroxidase-mimicking activity (PMA) in samples with high endogenous peroxidase activity (EPA). Unlike the endogenous peroxidases in plant extracts that are inhibited by elevated HO (>20 mM), the PMA of nanozymes was stable in concentrated HO (up to 4 M). Such a different stability of enzymes and Au@Pt to the substrate allowed for eliminating EPA and detecting only nanozymes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effects of nanostructured amorphous silica (SiO) on the immune system of Wistar rats after oral administration, revealing contradictory findings in existing literature.
  • Two experiments were conducted, one lasting 92 days with various doses and another lasting 28 days focusing on anaphylactic reactions using a high dose of SiO, assessing various immune and hematological responses.
  • Results indicated that while SiO does not worsen anaphylactic reactions, it has toxic effects on T-cells, suggesting a need for regulation of its use in food supplements and additives, with a no observed adverse effect level (NOAEL) established at 100 mg/kg body weight.
View Article and Find Full Text PDF

An assay was developed to detect the potato spindle tuber viroid (PSTVd), a dangerous plant pathogen that causes crop damage resulting in economic losses in the potato agriculture sector. The assay was based on the reverse transcription and recombinase polymerase amplification (RT-RPA) of PSTVd RNA coupled with amplicon detection via lateral flow assay (LFA). Primers labeled with fluorescein and biotin were designed for RT-RPA for effective recognition of the loop regions in the high-structured circular RNA of PSTVd.

View Article and Find Full Text PDF

Dickeya solani, one of the most significant bacterial pathogens, infects potato plants, resulting in severe economic damage. In this study, a lateral flow assay (LFA) combined with isothermal DNA amplification was developed for rapid, specific, and sensitive diagnosis of the potato blackleg disease caused by D. solani.

View Article and Find Full Text PDF

The influence of Au@Pt nanoparticles' composition, morphology, and peroxidase-mimicking activity on the limit of detection (LOD) of lateral flow immunoassay (LFIA) has been investigated. Fourteen types of nanoparticles were synthesized by varying the concentration of Pt (20-2000 μM), using gold nanoparticles (GNP, diameter 20.0 ± 2.

View Article and Find Full Text PDF